Displaying publications 101 - 120 of 2162 in total

Abstract:
Sort:
  1. Aklilu E, Zunita Z, Hassan L, Cheng CH
    Vet Microbiol, 2013 Jun 28;164(3-4):352-8.
    PMID: 23523336 DOI: 10.1016/j.vetmic.2013.02.030
    In this study, we report the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) among veterinary students and personnel in Malaysia. Nasal and oral swabs were collected from 103 veterinary medicine students and 28 personnel from a veterinary hospital. Antibiotic sensitivity test (AST), minimum inhibitory concentration (MIC) test, and PCR amplifications of nucA and mecA gene were performed. Molecular characterization of the isolates was conducted using multilocus sequence typing (MLST), staphylococcal protein A gene (spa) typing, and pulsed-field gel electrophoresis (PFGE). Results from MLST show the presence of the pandemic and widespread MRSA clones, ST5 and ST59. Spa gene typing revealed spa type t267 which has a wide geographical distribution. A new spa type, t5697 was found in this study. Fingerprint analysis by using PFGE show heterogeneity of the isolates. These findings affirm the importance of MRSA in veterinary settings and underscore the need for further extensive research to devise contextual control and prevention strategies.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  2. Aklilu E, Zunita Z, Hassan L, Chen HC
    Trop Biomed, 2010 Dec;27(3):483-92.
    PMID: 21399590
    Methicillin-resistant Staphylococcus aureus (MRSA) is known to cause nosocomial infections and is now becoming an emerging problem in veterinary medicine. The objective of the study was to determine the presence of MRSA in 100 cats and dogs sampled between November 2007 and April 2008 at the University Veterinary Hospital, Universiti Putra Malaysia. MRSA was detected in 8% of pets sampled. Ten percent (5/50) and 6% (3/50) of the isolates were from dogs and cats, respectively. All MRSA isolates possessed the mecA gene and were found to be resistant to at least three antimicrobials with a minimum of Oxacillin MIC of 8 μg/mL. One isolate (CT04) had an extremely high MIC of >256 μg/mL. The MLST type ST59 found in this study have been reported earlier from Singapore and other countries as a strain from animal and community-associated MRSA respectively. Pulsed-field gel electrophoresis revealed five pulsotypes. Two isolates from cats (CT27 and CT33) and three isolates from dogs (DG16, DG20, and DG49) were respectively assigned to pulsotypes B and D. The study suggests that cats and dogs in Malaysia are potential reservoirs for MRSA.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  3. Aklilu E, Raman K
    Int J Microbiol, 2020;2020:8853582.
    PMID: 32774381 DOI: 10.1155/2020/8853582
    This study was conducted to detect the presence of colistin-resistant Escherichia coli (E. coli) in raw chicken meat and bean sprouts collected from local markets and to determine the antimicrobial resistance patterns of the E. coli isolates. A total of 100 samples, comprised of 50 raw chicken meat and 50 bean sprouts, were collected and processed. Kirby-Bauer method was used to determine the antimicrobial resistance patterns, and PCR amplification was used to detect E. coli species-specific and colistin resistance (mcr-1 and mcr-2) genes. The results showed that 52.1% (12/23) of the E. coli isolated from raw chicken meat were positive for the colistin resistance encoding gene, mcr-1, whereas all the E. coli isolates from bean sprouts were negative for colistin resistance encoding genes. The findings show that chicken meat contaminated with colistin-resistant E. coli may pose public health risk to the consumers. Hence, prudent usage of antibiotics and hygienic handling of food items helps to prevent and combat the risks of spreading of colistin-resistant E. coli and the public health risks it may pose. More comprehensive and large-scale studies focusing on all the possible sources of colistin-resistant E. coli are recommended.
    Matched MeSH terms: Anti-Bacterial Agents
  4. Akram Z, Al-Shareef SA, Daood U, Asiri FY, Shah AH, AlQahtani MA, et al.
    Photomed Laser Surg, 2016 Apr;34(4):137-49.
    PMID: 26982216 DOI: 10.1089/pho.2015.4076
    The aim of this study was to assess the bactericidal efficacy of antimicrobial photodynamic dynamic therapy (aPDT) as an adjunct to scaling and root planing (SRP) against periodontal pathogens.
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage*; Anti-Bacterial Agents/therapeutic use
  5. Akter SF, Heller RD, Smith AJ, Milly AF
    J Infect Dev Ctries, 2009 Jul 01;3(6):447-51.
    PMID: 19762958
    BACKGROUND: Antimicrobials are often used inappropriately in paediatric wards of medical college hospitals in Bangladesh. Most of the antimicrobials are prescribed based on clinical grounds-signs and symptoms. This intervention study assessed the effectiveness of a training intervention on antimicrobials prescribing by physicians in paediatric wards of tertiary care level hospitals.

    METHODOLOGY: This study was conducted at medical college hospitals in Bangladesh during the period from 1998 through 2000. The pre-intervention survey of antimicrobial use was conducted during 1998 in five hospitals. The post-intervention survey was conducted after the interactive training during the succeeding year in three of the original five hospitals, of which one was the intervention hospital and two control hospitals. A total of 3,466 admitted paediatric patients' treatment charts (2,171 in the pre-intervention and 1,295 in the post-intervention surveys) were reviewed.

    RESULTS: The most commonly used antimicrobials were ampicillin, gentamicin, amoxicillin, cloxacillin and ceftriaxone. Appropriate antimicrobial therapy for the most common infectious diseases, pneumonia and diarrhoea, increased by 16.4% and 56.8% respectively in the intervention hospital compared with the two control hospitals and these improvements were significant (p = < 0.001 and p = 0.002, for pneumonia and diarrhoea respectively).

    CONCLUSIONS: An interactive, focussed educational intervention, targeted at physicians, appears to have been effective in improving appropriate antimicrobial prescribing for the most common paediatric infectious diseases in a medical college hospital in Bangladesh.

    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use*
  6. Al Azzam KM, Saad B, Adnan R, Aboul-Enein HY
    Anal Chim Acta, 2010 Aug 3;674(2):249-55.
    PMID: 20678638 DOI: 10.1016/j.aca.2010.06.046
    A capillary electrophoretic method for the separation of the enantiomers of both ofloxacin and ornidazole is described. Several parameters affecting the separation were studied, including the type and concentration of chiral selector, buffer pH, voltage and temperature. Good chiral separation of the racemic mixtures was achieved in less than 16 min with resolution factors Rs=5.45 and 6.28 for ofloxacin and ornidazole enantiomers, respectively. Separation was conducted using a bare fused-silica capillary and a background electrolyte (BGE) of 50 mM H(3)PO(4)-1 M tris solution; pH 1.85; containing 30 mg mL(-1) of sulfated-beta-cyclodextrin (S-beta-CD). The separation was carried out in reversed polarity mode at 25 degrees C, 18 kV, detection wavelength at 230 nm and using hydrodynamic injection for 15 s. Acceptable validation criteria for selectivity, linearity, precision, and accuracy were studied. The limits of detection (LOD) and limits of quantitation (LOQ) of the enantiomers (ofloxacin enantiomer 1 (OF-E1), ofloxacin enantiomer 2 (OF-E2), ornidazole enantiomer 1 (OR-E1) and ornidazole enantiomer 2 (OR-E2)) were (0.52, 0.46, 0.54, 0.89) and (1.59, 1.40, 3.07, 2.70) microg mL(-1), respectively. The proposed method was successfully applied to the assay of enantiomers of both ofloxacin and ornidazole in pharmaceutical formulations. The computational calculations for the enantiomeric inclusion complexes rationalized the reasons for the different migration times between the ofloxacin and ornidazole enantiomers.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification*
  7. Al Fraijat B, Al-Tawarah NM, Khlaifat AM, Qaralleh H, Khleifat KM, M A, et al.
    Trop Biomed, 2019 Sep 01;36(3):620-629.
    PMID: 33597484
    Urinary Tract Infections (UTIs) consider as the most common infections worldwide, with higher risk in patients experienced Acute Appendicitis (AA). The purpose of this study was, to investigate the bacterial profile of UTIs in patients with non-ruptured AA postsurgically, and to assess age- and gender-related links of all AA cases in Karak region, Jordan. Urine samples obtained from 46 cases (32 male and 14 female) aged between 16-70 years were diagnosed as non-ruptured AA, following with isolation and characterization of isolated bacteria. Out of 46 AA cases, uropathogens isolated from 25 (54.3%) UTI cases. Out of these isolates; 42 (73.7%) were gram-negative isolates and 15 (26.3%) were gram-positive bacteria. The percentage of isolates were E. coli (26.3%), Enterobacter species (21%), Enterococcus faecalis and Klebsiella pneumoniea (10.5%) for each, Streptococcus saprophytics and Pseudomonas aeruginosa (7%) for each, Yersinia spp. and S. milleri (8.8%). Out of UTI cases, 20 cases (80%) possessed mixed culture, each of them had at least one of Enterobacterial species. i.e. Enterobacter spp. or E. coli or both. More precisely, out of all these positivecases, 2 cases had pure gram positive-bacterial infection (8%), while pure gram negative bacterial infection comprised 48% of them and the rest (44%) were mixed (gram-negative and gram-positive) bacterial infection. Moreover, study revealed a high prevalence rate of AA cases 24 (52.2%) in the ages of 16-22 years, then declining the rate with increasing the age, reaching the lowest rate (4.3%) in ages of 60-70. In addition to age factor, the males significantly more susceptible to AA cases than females by 2.2-fold. Antibiotic sensitivity test revealed high resistance capability of E. coli to the most used antibiotics except for nitrofurantoin. Bacterial isolates showing sensitivity against ciprofloxacin, trimethoprim/sulfamethoxazole, amoxicillin-Clavulanic acid and nitrofurantoin, with a superiority for the first two. Results demonstrate high prevalence rate of UTIs in patients with AA. For avoiding, the needless use of antibiotics through sticking to our accountability as healthcare provisioner to pursuit the antimicrobial management.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Al Madfai F, Zaidi STR, Ming LC, Wanandy T, Patel RP
    Eur J Hosp Pharm, 2018 Oct;25(e2):e115-e119.
    PMID: 31157080 DOI: 10.1136/ejhpharm-2017-001221
    Background: Severe infections such as endocarditis and osteomyelitis require long-term treatment with parenteral antibiotics and hence prolonged hospitalisation. Continuous infusion of ceftaroline through elastomeric devices can facilitate early hospital discharge by managing parenteral antibiotics in patient's home. Therefore, the purpose of this study was to investigate the stability of ceftaroline in a commonly used elastomeric device.

    Method: A total of 24 elastomeric devices were prepared, and six elastomeric devices containing 6mg/mL of ceftaroline (three in each type of diluents) were stored at one of the following conditions: 4°C for 6 days, 25°C for 24hours, 30°C for 24hours or 35°C for 24hours. An aliquot was withdrawn before storage and at different time points. Chemical stability was measured using a stability indicating high-performance liquid chromatography, and physical stability was assessed as change in pH, colour and particle content.

    Results: Ceftaroline, when admixed with both diluents, was stable for 144, 24 and 12hours at 4°C, 25°C and 30°C, respectively. At 35°C, ceftaroline admixed with normal saline (NS) and glucose 5% was stable for 12hours and for 6hours, respectively. No evidence of particle formation, colour change or pH change was observed throughout the study period.

    Conclusions: Our findings support 12 or 24hours continuous elastomeric infusion of ceftaroline-NS admixture, and bulk preparation of elastomeric pumps containing ceftaroline solution in advance. This would facilitate early hospital discharge of patients eligible for the elastomeric-based home therapy and avoid the need for patient's caregivers travelling to the hospital on a daily basis.

    Matched MeSH terms: Anti-Bacterial Agents
  9. Al Sulayyim H, Ismail R, Al Hamid A, Mohammed B, Abdul Ghafar N
    J Infect Dev Ctries, 2024 Mar 31;18(3):371-382.
    PMID: 38635620 DOI: 10.3855/jidc.19071
    INTRODUCTION: Prevalence of antibiotic resistance (AR) during the coronavirus 2019 (COVID-19) pandemic was higher than pre-pandemic times. This study determined the prevalence and patterns of AR among Gram-positive and negative bacteria before, during and after COVID-19 in Saudi Arabia and identified the associated factors.

    METHODOLOGY: A retrospective cross-sectional study was employed to identify patients with positive AR bacteria between March 2019 and March 2022. The bacterial isolates and patients' data were identified from laboratory and medical records departments retrospectively. Binary logistic regression analysis was performed to identify the factors associated with AR and deaths. Multinominal logistic regression was applied to confirm the factors associated with AR classification.

    RESULTS: AR Gram-negative bacteria decreased during and after the pandemic. However, S. aureus showed a negligible increase in resistance rate after pandemic, while E. faecium, recorded a higher-than-average resistance rate during the pandemic. The prevalence of pan drug resistance (PDR) during the pandemic (85.7%) was higher than before (0%) and after (14.3%), p = 0.001. The length of stay and time were significant predictors for AR classification. The odds of multi drug resistance (MDR) development to PDR during the pandemic were 6 times higher than before and after (OR = 6.133, CI =, p = 0.020). Age, nationality, COVID-19 infection, smoking, liver disease, and type and number of bacteria were associated with death of patients with positive AR.

    CONCLUSIONS: Further studies are recommended to explore the prevalence of PDR and to justify the increased rates of E. faecium AR during the COVID-19 pandemic.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use
  10. Al-Abd NM, Nor ZM, Mansor M, Hasan MS, Kassim M
    Korean J Parasitol, 2016 Jun;54(3):273-80.
    PMID: 27417081 DOI: 10.3347/kjp.2016.54.3.273
    We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*
  11. Al-Adiwish WM, Tahir MI, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob WA
    Eur J Med Chem, 2013 Jun;64:464-76.
    PMID: 23669354 DOI: 10.1016/j.ejmech.2013.04.029
    New 5-aminopyrazoles 2a-c were prepared in high yields from the reaction of known α,α-dicyanoketene-N,S-acetals 1a-c with hydrazine hydrate under reflux in ethanol. These compounds were utilized as intermediates to synthesize pyrazolo[1,5-a]-pyrimidines 3a-c, 4a-d, 5a-c, and 6a-c, as well as pyrazolo[5,1-c][1,2,4]triazines 7a-c and 8a-c, by the reaction of 2-[bis(methylthio)methylene]malononitrile, α,α-dicyanoketene-N,S-acetals 1a-b, acetylacetone, acetoacetanilide as well as acetylacetone, and malononitrile, respectively. Furthermore, cyclization of 2a-c with pentan-2,5-dione yielded the corresponding 5-pyrrolylpyrazoles 9a-c. Moreover, fusion of 2a-c with acetic anhydride resulted in the corresponding 1-acetyl-1H-pyrazoles 10a-c. The antibacterial activity and cytotoxicity against Vero cells of several selected compounds are also reported.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  12. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p 
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*; Anti-Bacterial Agents/pharmacology
  13. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al.
    Int J Nanomedicine, 2017;12:8309-8323.
    PMID: 29200844 DOI: 10.2147/IJN.S150405
    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry
  14. Al-Jadi AM, Kanyan Enchang F, Mohd Yusoff K
    Turk J Med Sci, 2014;44(5):733-40.
    PMID: 25539538
    BACKGROUND/AIM: To examine, for the first time, the effect of a selected Malaysian honey and its major components on the proliferation of cultured fibroblasts.

    MATERIALS AND METHODS: Honey and some of its components, which include the sugars, the proteins, the hydrogen peroxide produced, and the phenolics, were exposed to cultured fibroblasts. The MTT colorimetric assay was used to assess cell viability and proliferation.

    RESULTS: The stimulatory effect of honey on fibroblast proliferation was observed to be time- and dose-dependent. The continuous production of hydrogen peroxide by the honey-glucose oxidase system also acts to stimulate cell proliferation in a time- and dose-dependent manner. The presence of phenolics with antioxidant properties, on the other hand, renders protection to the cells against the toxic effect of hydrogen peroxide. However, the presence of a growth factor-like substance in honey could not be ascertained.

    CONCLUSION: For the first time, honey and its major components were shown to exert stimulatory effects on cultured fibroblasts. Honey is therefore potentially useful in medicinal practices.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM
    Curr Drug Deliv, 2019;16(4):272-294.
    PMID: 30674256 DOI: 10.2174/1567201816666190123121425
    Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry*
  16. Al-Khdhairawi A, Sanuri D, Akbar R, Lam SD, Sugumar S, Ibrahim N, et al.
    Comput Biol Chem, 2023 Feb;102:107800.
    PMID: 36516617 DOI: 10.1016/j.compbiolchem.2022.107800
    Antimicrobial peptides (AMPs) are short peptides with a broad spectrum of antimicrobial activity. They play a key role in the host innate immunity of many organisms. The growing threat of microorganisms resistant to antimicrobial agents and the lack of new commercially available antibiotics have made in silico discovery of AMPs increasingly important. Machine learning (ML) has improved the speed and efficiency of AMP discovery while reducing the cost of experimental approaches. Despite various ML platforms developed, there is still a lack of integrative use of ML platforms for AMP discovery from publicly available protein databases. Therefore, our study aims to screen potential AMPs with antibiofilm properties from databases using ML platforms, followed by protein-peptide molecular docking analysis and molecular dynamics (MD) simulations. A total of 5850 peptides classified as non-AMP were screened from UniProtKB and analyzed using various online ML platforms (e.g., CAMPr3, DBAASP, dPABBs, Hemopred, and ToxinPred). Eight potential AMP peptides against Klebsiella pneumoniae with antibiofilm, non-toxic and non-hemolytic properties were then docked to MrkH, a transcriptional regulator of type 3 fimbriae involved in biofilm formation. Five of eight peptides bound more strongly than the native MrkH ligand when analyzed using HADDOCK and HPEPDOCK. Following the docking studies, our MD simulated that a Neuropeptide B (Peptide 3) bind strongly to the MrkH active sites. The discovery of putative AMPs that exceed the binding energies of the native ligand underscores the utility of the combined ML and molecular simulation strategies for discovering novel AMPs with antibiofilm properties.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism; Anti-Bacterial Agents/pharmacology
  17. Al-Madhagi WM, Hashim NM, Awadh Ali NA, Taha H, Alhadi AA, Abdullah AA, et al.
    J Chem Inf Model, 2019 05 28;59(5):1858-1872.
    PMID: 31117526 DOI: 10.1021/acs.jcim.8b00969
    Bioassay-guided isolation protocol was performed on petroleum ether extract of Peperomia blanda (Jacq.) Kunth using column chromatographic techniques. Five compounds were isolated and their structures were elucidated via one-dimensional (1D) and two-dimensional (2D) NMR, gas chromatography mass sectroscopy (GCMS), liquid chromatography mass spectroscopy (LCMS), and ultraviolet (UV) and infrared (IR) analyses. Dindygulerione E (a new compound), and two compounds isolated from P. blanda for the first time-namely, dindygulerione A and flavokawain A-are reported herein. Antimicrobial activity was screened against selected pathogenic microbes, and minimum inhibitory concentrations (MIC) were recorded within the range of 62-250 μg/mL. Assessment of the pharmacotherapeutic potential has also been done for the isolated compounds, using the Prediction of Activity spectra for Substances (PASS) software, and different activities of compounds were predicted. Molecular docking, molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations have proposed the binding affinity of these compounds toward methylthioadenosine phosphorylase enzyme, which may explain their inhibitory actions.
    Matched MeSH terms: Anti-Bacterial Agents/isolation & purification; Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*
  18. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    Biomed Res Int, 2016;2016:5891703.
    PMID: 27563671 DOI: 10.1155/2016/5891703
    The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*; Anti-Bacterial Agents/pharmacology
  19. Al-Maqtari QA, Al-Ansi W, Mahdi AA, Al-Gheethi AAS, Mushtaq BS, Al-Adeeb A, et al.
    Environ Sci Pollut Res Int, 2021 May;28(20):25479-25492.
    PMID: 33462691 DOI: 10.1007/s11356-021-12346-6
    Artemisia arborescens, Artemisia abyssinica, Pulicaria jaubertii, and Pulicaria petiolaris are fragrant herbs traditionally used in medication and as a food seasoning. To date, there are no studies on the use of supercritical fluids extraction with carbon dioxide (SFE-CO2) on these plants. This study evaluates and compares total phenolic content (TPC), antioxidant activity by DPPH• and ABTS•+, antibacterial, and anti-biofilm activities of SFE-CO2 extracts. Extraction was done by SFE-CO2 with 10% ethanol as a co-solvent. A. abyssinica extract had the highest extraction yield (8.9% ± 0.41). The GC/MS analysis of volatile compounds identified 307, 265, 213, and 201compounds in A. abyssinica, A. arborescens, P. jaubertii, and P. petiolaris, respectively. The P. jaubertii extract had the highest TPC (662.46 ± 50.93 mg gallic acid equivalent/g dry extract), antioxidant activity (58.98% ± 0.20), and antioxidant capacity (71.78 ± 1.84 mg Trolox equivalent/g dry extract). The A. abyssinica and P. jaubertii extracts had significantly higher antimicrobial activity and were more effective against Gram-positive bacteria. B. subtilis was the most sensitive bacterium. P. aeruginosa was the most resistant bacterium. P. jaubertii extract had the optimum MIC and MBC (0.4 mg/ml) against B. subtilis. All SFE-CO2 extracts were effective as an anti-biofilm formation for all tested bacteria at 1/2 MIC. Meanwhile, P. jaubertii and P. petiolaris extracts were effective anti-biofilm for most tested bacteria at 1/16 MIC. Overall, the results indicated that the SFE-CO2 extracts of these plants are good sources of TPC, antioxidants, and antibacterial, and they have promising applications in the industrial fields.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  20. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: Anti-Bacterial Agents/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links