Displaying publications 101 - 120 of 174 in total

Abstract:
Sort:
  1. Salama M, El-Desouky S, Alsayed A, El-Hussiny M, Magdy K, Fekry E, et al.
    Neurotox Res, 2019 May;35(4):987-992.
    PMID: 30362086 DOI: 10.1007/s12640-018-9974-3
    Tauopathy is a pathological hallmark of many neurodegenerative diseases. It is characterized by abnormal aggregates of pathological phosphotau and somatodendritic redistribution. One suggested strategy for treating tauopathy is to stimulate autophagy, hence, getting rid of these pathological protein aggregates. One key controller of autophagy is mTOR. Since stimulation of mTOR leads to inhibition of autophagy, inhibitors of mTOR will cause stimulation of autophagy process. In this report, tauopathy was induced in mice using annonacin. Blocking of mTOR was achieved through stereotaxic injection of siRNA against mTOR. The behavioral and immunohistochemical evaluation revealed the development of tauopathy model as proven by deterioration of behavioral performance in open field test and significant tau aggregates in annonacin-treated mice. Blocking of mTOR revealed significant clearance of tau aggregates in the injected side; however, tau expression was not affected by mTOR blockage.
    Matched MeSH terms: Brain/metabolism
  2. Khanna K, Sharma N, Karwasra R, Kumar A, Nishad DK, Janakiraman AK, et al.
    J Drug Target, 2025 Jan;33(1):99-110.
    PMID: 39229894 DOI: 10.1080/1061186X.2024.2397800
    BACKGROUND: Intranasal drug delivery shows potential for brain access via olfactory and trigeminal routes.

    PURPOSE: This work aimed to ensure brain availability of nalbuphine via the nasal route.

    METHOD: Chitosan based nanoparticles loaded with nalbuphine were successfully prepared using ionic gelation method and characterised.

    RESULT: SEM results revealed that the nanoparticles were spherical in shape, with an average size of 192.4 ± 11.6 nm. Zeta potential and entrapment efficiency was found 32.8 mV and 88.43 ± 7.75%, respectively. The X-ray diffractometry and DSC results unravel a profound understanding on the physical and thermal characteristics. The in-vitro release of nalbuphine from the nanoparticles was biphasic, with an initial burst release followed by a slow-release profile. In-vitro cell study on HEK-293 cells and microscopic images of brain tissue confirmed the safety profile of formulation. In-vivo efficacy studies on animal confirmed the effectiveness of developed intranasal formulation as compared to the standard therapy. The in-vivo pharmacokinetic studies showed that the prepared nanoparticles were able to efficiently deliver nalbuphine to the brain in comparison to the other body organs. Gamma scintigraphy images showed retention of the drug in the brain. Furthermore, the efficacy studies confirmed that the nanoparticles were found significantly more effective than the marketed formulation in pain management.

    Matched MeSH terms: Brain/metabolism
  3. Al-Obaidi MMJ, Desa MNM
    Cell Mol Neurobiol, 2018 Oct;38(7):1349-1368.
    PMID: 30117097 DOI: 10.1007/s10571-018-0609-2
    This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria-host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.
    Matched MeSH terms: Brain/metabolism*
  4. Swamy M, Suhaili D, Sirajudeen KN, Mustapha Z, Govindasamy C
    PMID: 25395704
    BACKGROUND: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA).

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.

    RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.

    CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Brain/metabolism
  5. Ling KH, Hewitt CA, Tan KL, Cheah PS, Vidyadaran S, Lai MI, et al.
    BMC Genomics, 2014;15:624.
    PMID: 25052193 DOI: 10.1186/1471-2164-15-624
    The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84.
    Matched MeSH terms: Brain/metabolism*
  6. Koriem KM, Abdelhamid AZ, Younes HF
    Toxicol. Mech. Methods, 2013 Feb;23(2):134-43.
    PMID: 22992185 DOI: 10.3109/15376516.2012.730561
    Caffeic acid (CA) (3,4-dihydroxycinnamic acid) is among the major hydroxycinnamic acids. Hydroxycinnamic acid is the major subgroup of phenolic compounds. Methamphetamine (METH) is a potent addictive psychostimulant. Chronic use and acute METH intoxication can cause substantial medical consequences, including spleen, kidney, liver and heart. The objective of the present study was to evaluate the antioxidant activity of CA to protect against oxidative stress and DNA damage to various organs in METH toxicity. Thirty-two male Sprague Dawley (SD) rats were divided into four equal groups: group 1 was injected (i.p) with saline (1 mL/kg) while groups 2,3 and 4 were injected (i.p) with METH (10 mg/kg) twice a day over five days period. Where 100 & 200 mg/kg of CA were injected (i.p) into groups 3 and 4, respectively one day before exposure to METH injections. Tissue antioxidants and DNA content were evaluated in different tissues. METH decreased glutathione (GSH) and glutathione peroxidase (GPx) levels while increased malondialdehyde (MDA), catalase (CAT) and protein carbonyl levels in brain (hypothalamus), liver, and kidney tissues of rats. METH increased hyperdiploidy in these tissues and DNA damage results. Prior treatment of CA to animals exposed to METH restores the above parameters to the normal levels and preserves the DNA content of these tissues. These results were supported by histopathological investigations. In conclusion, METH induced oxidative stress and DNA damage and pretreatment of CA before METH injections prevented tissue oxidative stress and DNA damage in METH-treated animals.
    Matched MeSH terms: Brain/metabolism
  7. Naidu KR, Kumar KS, Arulselvan P, Reddy CB, Lasekan O
    Arch Pharm (Weinheim), 2012 Dec;345(12):957-63.
    PMID: 23015406 DOI: 10.1002/ardp.201200192
    A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
    Matched MeSH terms: Brain/metabolism
  8. Ogawa S, Ng KW, Ramadasan PN, Nathan FM, Parhar IS
    Endocrinology, 2012 May;153(5):2398-407.
    PMID: 22454151 DOI: 10.1210/en.2012-1062
    The Kiss1/KISS1 gene has recently been implicated as a potent hypothalamic regulator of reproductive functions, in particular, the onset of puberty in mammals. In zebrafish (Danio rerio), there are two kiss1 homologues (kiss1 and kiss2) expressed in the brain: Kiss2-expressing neurons in the hypothalamic nuclei are considered potent regulators of reproduction, whereas the role of Kiss1-expressing neurons in the habenula remains unknown. We first analyzed the expression of kiss1 mRNA in a transgenic zebrafish, in which the habenula-interpeduncular nucleus (IPN) pathway is labelled with green fluorescent protein, and our application of a biocytin neural tracer into the habenula showed the presence of neuronal projections of Kiss1 neurons to the ventral IPN. Therefore, we speculated that kiss1 neurons might regulate the serotonergic system in the raphe. However, laser microdissection followed by real-time PCR revealed the expression of Kiss1 receptor (kissr1) mRNA in the habenula and the ventral IPN but not in the dorsal IPN or the serotonergic neurons in the raphe nuclei. Dual-fluorescent in situ hybridization revealed the coexpression of kiss1 and kissr1 mRNA in the habenula. Administration of Kiss1 significantly decreased the level of kiss1 mRNA (0.3- to 0.5-fold, P < 0.001), but the level of c-fos mRNA was increased (≈ 3-fold, P < 0.05) in the ventral habenula, suggesting that there is autocrine regulation of the kiss1 gene. Kiss1 administration significantly increased the c-fos mRNA levels in the raphe nuclei (2.5-fold, P < 0.001) and genes involved in the regulation of serotonin levels (pet1 and slc6a4a; 3.3- and 2.2-fold, P < 0.01). These findings suggest that the autocrine-regulated habenular Kiss1 neurons indirectly regulate the serotonergic system in the raphe nuclei through the IPN in the zebrafish.
    Matched MeSH terms: Brain/metabolism*
  9. Moo KS, Radhakrishnan S, Teoh M, Narayanan P, Bukhari NI, Segarra I
    Yao Xue Xue Bao, 2010 Jul;45(7):901-8.
    PMID: 20931790
    Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.
    Matched MeSH terms: Brain/metabolism
  10. Mohd-Yusof NY, Monroig O, Mohd-Adnan A, Wan KL, Tocher DR
    Fish Physiol Biochem, 2010 Dec;36(4):827-43.
    PMID: 20532815 DOI: 10.1007/s10695-010-9409-4
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
    Matched MeSH terms: Brain/metabolism*
  11. Swamy M, Sirajudeen KN, Chandran G
    Drug Chem Toxicol, 2009;32(4):326-31.
    PMID: 19793024 DOI: 10.1080/01480540903130641
    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity.
    Matched MeSH terms: Brain/metabolism
  12. Lim WK
    Recent Pat CNS Drug Discov, 2007 Jun;2(2):107-12.
    PMID: 18221221
    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in humans. They convey extracellular signals into the cell interior by activating intracellular processes such as heterotrimeric G protein-dependent signaling pathways. They are widely distributed in the nervous system, and mediate key physiological processes including cognition, mood, appetite, pain and synaptic transmission. With at least 30% of marketed drugs being GPCR modulators, they are a major therapeutic target in the pharmaceutical industry's drug discovery programs. This review will survey recently patented ligands for GPCRs implicated in CNS disorders, in particular the metabotropic glutamate, adenosine and cannabinoid receptors. Metabotropic glutamate receptors regulate signaling by glutamate, the major excitatory brain neurotransmitter, while adenosine is a ubiquitous neuromodulater mediating diverse physiological effects. Recent patents for ligands of these receptors include mGluR5 antagonists and adenosine A(1) receptor agonists. Cannabinoid receptors remain one of the most important GPCR drug discovery target due to the intense interest in CB(1) receptor antagonists for treating obesity and metabolic syndrome. Such small molecule ligands are the outcome of the continuing focus of many pharmaceutical companies to identify novel GPCR agonist, antagonist or allosteric modulators useful for CNS disorders, for which more effective drugs are eagerly awaited.
    Matched MeSH terms: Brain/metabolism*
  13. Leow SS, Sekaran SD, Tan Y, Sundram K, Sambanthamurthi R
    Nutr Neurosci, 2013 Sep;16(5):207-17.
    PMID: 23433062 DOI: 10.1179/1476830512Y.0000000047
    Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties.
    Matched MeSH terms: Brain/metabolism
  14. Bukhari SN, Jantan I
    Mini Rev Med Chem, 2015;15(13):1110-21.
    PMID: 26420724
    There is a crucial need to develop new effective drugs for Alzheimer's disease (AD) as the currently available AD treatments provide only momentary and incomplete symptomatic relief. Amongst natural products, curcumin, a major constituent of turmeric, has been intensively investigated for its neuroprotective effect against β-amyloid (Aβ)-induced toxicity in cultured neuronal cells. The ability of curcumin to attach to Aβ peptide and prevent its accumulation is attributed to its three structural characteristics such as the presence of two aromatic end groups and their co-planarity, the length and rigidity of the linker region and the substitution conformation of these aromatics. However, curcumin failed to reach adequate brain levels after oral absorption in AD clinical trials due to its low water solubility and poor oral bioavailability. A number of new curcumin analogs that mimic the active site of the compound along with analogs that mimic the curcumin anti-amyloid effect combined with anticholinesterase effect have been developed to enhance the bioavailability, pharmacokinetics, water solubility, stability at physiological conditions and delivery of curcumin. In this article, we have summarized all reported synthetic analogs of curcumin showing effects on β-amyloid and discussed their potential as therapeutic and diagnostic agents for AD.
    Matched MeSH terms: Brain/metabolism
  15. Ling KH, Brautigan PJ, Moore S, Fraser R, Cheah PS, Raison JM, et al.
    Genomics, 2016 Mar;107(2-3):88-99.
    PMID: 26802803 DOI: 10.1016/j.ygeno.2016.01.006
    Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3.
    Matched MeSH terms: Brain/metabolism
  16. Lau CL, Chan ST, Selvaratanam M, Khoo HW, Lim AY, Modamio P, et al.
    Fundam Clin Pharmacol, 2015 Aug;29(4):404-16.
    PMID: 26011058 DOI: 10.1111/fcp.12126
    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P < 0.05), was higher in liver and brain (P < 0.001), and lower in kidney (P < 0.001) vs. male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P < 0.01), brain, liver, and kidney (all P < 0.001). However, in male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P < 0.001). The tissue-to-plasma AUC0→∞ ratio was similar between male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P < 0.001) while remained unchanged in female mice and in kidney (male and female mice) but decreased 55% in brain (P < 0.05). The tissue-to-plasma partial AUC ratio, the drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences.
    Matched MeSH terms: Brain/metabolism
  17. Safdar A, Zakaria R, Aziz CBA, Rashid U, Azman KF
    Biogerontology, 2020 04;21(2):203-216.
    PMID: 31792648 DOI: 10.1007/s10522-019-09854-x
    One of the most significant hallmarks of aging is cognitive decline. D-galactose administration may impair memory and mimic the effects of natural aging. In this study, the efficiency of goat milk to protect against memory decline was tested. Fifty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control group, (ii) goat milk treated group, (iii) D-galactose treated group, and (iv) goat milk plus D-galactose treated group. Subcutaneous injections of D-galactose at 120 mg/kg and oral administrations of goat milk at 1 g/kg were chosen for the study. Goat milk and D-galactose were administered concomitantly for 6 weeks, while the control group received saline. After 6 weeks, novel object recognition and T-maze tests were performed to evaluate memory of rats. Following behavioral tests, the animals were sacrificed, and right brain homogenates were analyzed for levels of lipid peroxidation, antioxidant enzymes and neurotrophic factors. The left brain hemisphere was used for histological study of prefrontal cortex and hippocampus. There was a significant memory impairment, an increase in oxidative stress and neurodegeneration and a reduction in antioxidant enzymes and neurotrophic factors levels in the brain of D-galactose treated rats compared to controls. Goat milk treatment attenuated memory impairment induced by D-galactose via suppressing oxidative stress and neuronal damage and increasing neurotrophic factors levels, thereby suggesting its potential role as a geroprotective food.
    Matched MeSH terms: Brain/metabolism*
  18. Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF
    ACS Chem Neurosci, 2020 02 19;11(4):485-500.
    PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640
    Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
    Matched MeSH terms: Brain/metabolism
  19. Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF
    Pharmacol Res, 2020 06;156:104792.
    PMID: 32278047 DOI: 10.1016/j.phrs.2020.104792
    Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressing neurodegenerative disorder with no effective disease-modifying treatment up to date. The underlying molecular mechanisms of ALS are not yet completely understood. However, the critical role of the innate immune system and neuroinflammation in ALS pathogenesis has gained increased attention. High mobility group box 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, acting as a pro-inflammatory cytokine mainly through activation of its principal receptors, the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) which are crucial components of the innate immune system. HMGB1 is an endogenous ligand for both RAGE and TLR4 that mediate its biological effects. Herein, on the ground of pre-clinical findings we unravel the underlying mechanisms behind the plausible contribution of HMGB1 and its receptors (RAGE and TLR4) in the ALS pathogenesis. Furthermore, we provide an account of the therapeutic outcomes associated with inhibition/blocking of HMGB1 receptor signalling in preventing motor neuron's death and delaying disease progression in ALS experimental models. There is strong evidence that HMGB1, RAGE and TLR4 signaling axes might present potential targets against ALS, opening a novel headway in ALS research that could plausibly bridge the current treatment gap.
    Matched MeSH terms: Brain/metabolism*
  20. Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C
    Int J Biol Macromol, 2021 Jan 15;167:906-920.
    PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047
    The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
    Matched MeSH terms: Brain/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links