Displaying publications 101 - 120 of 697 in total

Abstract:
Sort:
  1. Ellulu MS, Khaza'ai H, Abed Y, Rahmat A, Ismail P, Ranneh Y
    Inflammopharmacology, 2015 Jun;23(2-3):79-89.
    PMID: 25676565 DOI: 10.1007/s10787-015-0228-1
    The roles of Omega-3 FAs are inflammation antagonists, while Omega-6 FAs are precursors for inflammation. The plant form of Omega-3 FAs is the short-chain α-linolenic acid, and the marine forms are the long-chain fatty acids: docosahexaenoic acid and eicosapentaenoic acid. Omega-3 FAs have unlimited usages, and they are considered as omnipotent since they may benefit heart health, improve brain function, reduce cancer risks and improve people's moods. Omega-3 FAs also have several important biological effects on a range of cellular functions that may decrease the onset of heart diseases and reduce mortality among patients with coronary heart disease, possibly by stabilizing the heart's rhythm and by reducing blood clotting. Some review studies have described the beneficial roles of Omega-3 FAs in cardiovascular diseases (CVDs), cancer, diabetes, and other conditions, including inflammation. Studies of the effect of Omega-3 FAs gathered from studies in diseased and healthy population. CVDs including atherosclerosis, coronary heart diseases, hypertension, and metabolic syndrome were the major fields of investigation. In studies of obesity, as the central obesity increased, the level of adipocyte synthesis of pro-inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were increased and the level of anti-inflammatory adiponectin was decreased indicating a state of inflammation. The level of C reactive protein (CRP) synthesized from hepatocyte is increased by the influence of IL-6. CRP can be considered as a marker of systemic inflammation associated with increased risks of CVDs. In molecular studies, Omega-3 FAs have direct effects on reducing the inflammatory state by reducing IL-6, TNF-α, CRP and many other factors. While the appropriate dosage along with the administrative duration is not known, the scientific evidence-based recommendations for daily intake are not modified.
    Matched MeSH terms: Inflammation/diet therapy*; Inflammation/metabolism
  2. Kassim M, Achoui M, Mansor M, Yusoff KM
    Fitoterapia, 2010 Dec;81(8):1196-201.
    PMID: 20708657 DOI: 10.1016/j.fitote.2010.07.024
    We investigated the effects of honey and its methanol and ethyl acetate extracts on inflammation in animal models. Rats' paws were induced with carrageenan in the non-immune inflammatory and nociceptive model, and lipopolysaccharide (LPS) in the immune inflammatory model. Honey and its extracts were able to inhibit edema and pain in inflammatory tissues as well as showing potent inhibitory activities against NO and PGE(2) in both models. The decrease in edema and pain correlates with the inhibition of NO and PGE(2). Phenolic compounds have been implicated in the inhibitory activities. Honey is potentially useful in the treatment of inflammatory conditions.
    Matched MeSH terms: Inflammation/drug therapy*; Inflammation/metabolism
  3. Wong KT, Munisamy B, Ong KC, Kojima H, Noriyo N, Chua KB, et al.
    J. Neuropathol. Exp. Neurol., 2008 Feb;67(2):162-9.
    PMID: 18219253 DOI: 10.1097/nen.0b013e318163a990
    Previous neuropathologic studies of Enterovirus 71 encephalomyelitis have not investigated the anatomic distribution of inflammation and viral localization in the central nervous system (CNS) in detail. We analyzed CNS and non-CNS tissues from 7 autopsy cases from Malaysia and found CNS inflammation patterns to be distinct and stereotyped. Inflammation was most marked in spinal cord gray matter, brainstem, hypothalamus, and subthalamic and dentate nuclei; it was focal in the cerebrum, mainly in the motor cortex, and was rare in dorsal root ganglia. Inflammation was absent in the cerebellar cortex, thalamus, basal ganglia, peripheral nerves, and autonomic ganglia. The parenchymal inflammatory response consisted of perivascular cuffs, variable edema, neuronophagia, and microglial nodules. Inflammatory cells were predominantly CD68-positive macrophage/microglia, but there were a few CD8-positive lymphocytes. There were no viral inclusions; viral antigens and RNA were localized only in the somata and processes of small numbers of neurons and in phagocytic cells. There was no evidence of virus in other CNS cells, peripheral nerves, dorsal root autonomic ganglia, or non-CNS organs. The results indicate that Enterovirus 71 is neuronotropic, and that, although hematogenous spread cannot be excluded, viral spread into the CNS could be via neural pathways, likely the motor but not peripheral sensory or autonomic pathways. Viral spread within the CNS seems to involve motor and possibly other pathways.
    Matched MeSH terms: Inflammation/etiology; Inflammation/virology*
  4. Sharma JN
    Eur J Rheumatol Inflamm, 1991;11(2):30-7.
    PMID: 1365470
    Components of the kallikrein-kininogen-kinin are activated in response to noxious stimuli (chemical, physical or bacterial), which may lead to excessive release of kinins in the synovial joints that may produce inflammatory joint disease. The inflammatory changes observed in synovial tissue may be due to activation of B2 receptors. Kinins also stimulate the synthesis of other pro-inflammatory agents (PGs, LTs, histamine, EDRF, PGI2 and PAF) in the inflamed joint. B2 receptor antagonists may provide valuable agents as new analgesic drugs. Further, it is suggested that substances directed to reduce the activation of KKS may provide a pharmacological basis for the synthesis of novel anti-rheumatic or anti-inflammatory drugs.
    Matched MeSH terms: Inflammation Mediators/antagonists & inhibitors; Inflammation Mediators/metabolism
  5. A/L B Vasanth Rao VR, Tan SH, Candasamy M, Bhattamisra SK
    Diabetes Metab Syndr, 2018 11 30;13(1):754-762.
    PMID: 30641802 DOI: 10.1016/j.dsx.2018.11.054
    Diabetic nephropathy (DN) is a major cause of end-stage renal disease and affects a large number of individuals with diabetes. However, the development of specific treatments for DN has not yet been identified. Hence, this review is concisely designed to understand the molecular pathways leading to DN in order to develop suitable therapeutic strategies. Extensive literature search have been carried in regard with the pathogenesis and pathophysiology of DN, drug targets and updates on clinical trials, the consequences associated with DN and the potential biomarkers for diagnosis and prediction of DN are discussed in this review. DN is characterised by microalbuminuria and macroalbuminuria, and morphological changes such as glomerular thickening, interstitial fibrosis, formation of nodular glomerulosclerosis and decreased endothelial cell fenestration. Besides, the involvement of renin-angiotensin-aldosterone system, inflammation and genetic factors are the key pathways in the progression of DN. In regard with drug development drugs targeted to epidermal growth factor, inflammatory cytokines, ACTH receptor and TGFβ1 receptors are in pipeline for clinical trials whereas, several drugs have also failed in phase III and phase IV of clinical trials due to lack of efficacy and severe adverse effect. The research on DN is limited with respect to its pathogenesis and drug development. Thus, a more detailed understanding of the pathogenesis of DN is very essential to progress in the drug development process.
    Matched MeSH terms: Inflammation Mediators/antagonists & inhibitors; Inflammation Mediators/metabolism
  6. Wong SK, Chin KY, Ima-Nirwana S
    Curr Drug Targets, 2019;20(12):1264-1280.
    PMID: 30961493 DOI: 10.2174/1389450120666190405172524
    Metabolic Syndrome (MetS) involves a cluster of five conditions, i.e. obesity, hyperglycaemia, hypertension, hypertriglyceridemia and low High-Density Lipoprotein (HDL) cholesterol. All components of MetS share an underlying chronic inflammatory aetiology, manifested by increased levels of pro-inflammatory cytokines. The pathogenic role of inflammation in the development of MetS suggested that toll-like receptor (TLR) activation may trigger MetS. This review summarises the supporting evidence on the interactions between MetS and TLR activation, bridged by the elevation of TLR ligands during MetS. The regulatory circuits mediated by TLR activation, which modulates signal propagation, leading to the state of chronic inflammation, are also discussed. Taken together, TLR activation could be the molecular basis in the development of MetS-induced inflammation.
    Matched MeSH terms: Inflammation/complications*; Inflammation/metabolism
  7. Paudel YN, Angelopoulou E, Akyuz E, Piperi C, Othman I, Shaikh MF
    Pharmacol Res, 2020 10;160:105172.
    PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172
    Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
    Matched MeSH terms: Inflammation/complications; Inflammation/pathology
  8. Fazalul Rahiman SS, Basir R, Talib H, Tie TH, Chuah YK, Jabbarzare M, et al.
    Trop Biomed, 2013 Dec;30(4):663-80.
    PMID: 24522137 MyJurnal
    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.
    Matched MeSH terms: Inflammation/immunology*; Inflammation/pathology*
  9. Shastri MD, Allam VSRR, Shukla SD, Jha NK, Paudel KR, Peterson GM, et al.
    Life Sci, 2021 Oct 15;283:119871.
    PMID: 34352260 DOI: 10.1016/j.lfs.2021.119871
    Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.
    Matched MeSH terms: Inflammation/immunology; Inflammation/pathology
  10. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
    Matched MeSH terms: Inflammation/diet therapy*; Inflammation/metabolism
  11. Lee NT, Ong LK, Gyawali P, Nassir CMNCM, Mustapha M, Nandurkar HH, et al.
    Biomolecules, 2021 07 06;11(7).
    PMID: 34356618 DOI: 10.3390/biom11070994
    The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood-brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
    Matched MeSH terms: Inflammation/metabolism; Inflammation/pathology
  12. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al.
    Oxid Med Cell Longev, 2016;2016:5276130.
    PMID: 27803762
    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
    Matched MeSH terms: Inflammation/classification; Inflammation/drug therapy*
  13. Mo SY, Lai OM, Chew BH, Ismail R, Bakar SA, Jabbar NA, et al.
    Eur J Nutr, 2019 Aug;58(5):1873-1885.
    PMID: 29872922 DOI: 10.1007/s00394-018-1738-6
    PURPOSE: We aim to investigate the postprandial effects of palm olein (PO) and chemically interesterified palm olein (IPO) with different proportions of palmitic acid at the sn-2 position using high oleic sunflower oil (HOS) as control fat on concentrations of gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters in type 2 diabetic (T2D) subjects.

    METHODS: Using a randomised double-blind crossover design, 21 (men = 6, women = 15) T2D subjects consumed test meals (3.65 MJ) consisting of a high fat muffin (containing 50 g test fats provided as PO, IPO or HOS) and a milkshake. Postprandial changes in gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters after meals were analysed. Some of the solid fractions of the IPO were removed and thus the fatty acid composition of the PO and IPO was not entirely equal (PO vs IPO: palmitate 39.8 vs 38.7; oleate 43.6 vs 45.1). PO, IPO and HOS contained 9.7, 38.9 and 0.2 g/100 g total fatty acids of palmitic acid at the sn-2 position, respectively. At 37 °C, IPO contained 4.2% SFC whereas PO and HOS were completely melted.

    RESULTS: Our novel observation shows that the incremental area under curve (iAUC) 0-6 h of plasma GIP concentration was on average 16% lower following IPO meal compared with PO and HOS (P 

    Matched MeSH terms: Inflammation/blood; Inflammation/diet therapy
  14. Nik Shanita S, Siti Hanisa A, Noor Afifah AR, Lee ST, Chong KH, George P, et al.
    PMID: 30360488 DOI: 10.3390/ijerph15112332
    The present study aimed to report the prevalence of anaemia and iron deficiency (ID) and to explore the associations among socio-demographic characteristics, nutritional status and inflammation status in the occurrence of anaemia and ID in a nationally representative sample of Malaysian primary schoolchildren. Using data from the South East Asian Nutrition Surveys (SEANUTS), 544 Malaysian children aged 7 to 12 years were included in this secondary analysis. Blood samples were drawn for haemoglobin and serum ferritin analysis while C-reactive protein (CRP) and α-1-acid glycoprotein (AGP) were measured to detect inflammation. Prevalence of anaemia and ID were 4.0% and 5.2%, respectively. There were significantly more anaemic indigenous bumiputra children (9.9%) than Chinese children (0.6%). Correction for inflammation did not change the prevalence of ID. More overweight/obese children than thin/normal weight children were found to have elevated acute phase protein (APP). Children with elevated inflammatory markers had significantly higher ferritin level than children without inflammation. Periodic health assessments of anaemia and ID at the population level to monitor and clarify the epidemiology of health problems are required to inform public health policies and strategies.
    Matched MeSH terms: Inflammation/blood; Inflammation/epidemiology
  15. Pathmanathan SG, Lawley B, McConnell M, Baird MA, Tannock GW
    Anaerobe, 2020 Feb;61:102112.
    PMID: 31629806 DOI: 10.1016/j.anaerobe.2019.102112
    Immuno-modulatory effects of infant gut bacteria were tested on poly(I:C) stimulated HT-29 intestinal epithelial cells. Blautia producta, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides thetaiotaomicron decreased transcription of poly(I:C)-induced inflammatory genes. Modulation of basal level and poly(I:C)-induced IL-8 secretion varied between bacterial species, and between heat treated and non-heat treated bacterial cells.
    Matched MeSH terms: Inflammation/genetics; Inflammation/metabolism
  16. Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, et al.
    Pharmacol Ther, 2020 03;207:107464.
    PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464
    Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
    Matched MeSH terms: Inflammation/drug therapy*; Inflammation/metabolism
  17. Ranneh Y, Mahmoud AM, Fadel A, Albujja M, Akim AM, Hamid HA, et al.
    PMID: 32957878 DOI: 10.2174/1386207323999200918152111
    BACKGROUND: Systemic acute inflammation is the hallmark of sepsis and is associated with multiple organ dysfunction.

    OBJECTIVE: This study investigated the potential of Stingless Bee Honey (SBH) to suppress lipopolysaccharide (LPS)-induced systemic acute inflammation in rats and to reveal the probable mechanism of action.

    METHODS: Rats received 4.6 and 9.2 g/kg SBH for 7 days followed by a single injection of LPS after which blood samples were taken 6h later.

    RESULTS: LPS induced liver, kidney, heart, and lung injury, were manifested by increased serum transaminases, alkaline phosphatase, creatine kinase, creatinine, and urea, along with multiple histological alterations, particularly leukocyte infiltration. Pro-inflammatory cytokines were elevated in the serum, and NF-κB p65, p38 MAPK, and HMGB-1 were significantly increased in different tissues of LPS-challenged rats. SBH prevented tissue injury, ameliorated pro-inflammatory cytokines, and suppressed NF-κB p65, p38 MAPK, and HMGB-1 in rats that had received LPS. In addition, SBH diminished reactive oxygen species (ROS) production, lipid peroxidation, and oxidative DNA damage, and enhanced glutathione and Nrf2 in LPS-treated rats.

    CONCLUSION: SBH prevents systemic acute inflammation by suppressing NF-κB, p38 MAPK, HMGB-1, oxidative stress, and tissue injury in rats. Thus, SBH may represent an effective anti-inflammatory nutraceutical, pending further mechanistic studies.

    Matched MeSH terms: Inflammation/chemically induced; Inflammation/drug therapy*
  18. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Belén LH, Kaur R, Kregiel D, et al.
    Oxid Med Cell Longev, 2021;2021:7571132.
    PMID: 34349875 DOI: 10.1155/2021/7571132
    The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites' composition and bioactive effects.
    Matched MeSH terms: Inflammation/pathology; Inflammation/prevention & control*
  19. Aamir K, Khan HU, Hossain CF, Afrin MR, Jusuf PR, Waheed I, et al.
    Life Sci, 2022 Jan 15;289:120232.
    PMID: 34919901 DOI: 10.1016/j.lfs.2021.120232
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a worldwide health issue primarily due to failure of pancreatic β-cells to release sufficient insulin.

    PURPOSE: The present work aimed to assess the antidiabetic potential of arjunolic acid (AA) isolated from Terminalia arjuna in type 2 diabetic rats.

    STUDY DESIGN: After extraction, isolation and purification, AA was orally administered to type 2 diabetic Sprague Dawley rats to investigate antidiabetic effect of AA.

    METHOD: T2DM was induced via single intraperitoneal injection of streptozotocin-nicotinamide (STZ-NIC) in adult male rats. After 10 days, fasting and random blood glucose (FBG and RBG), body weight (BW), food and water intake, serum C-peptide, insulin and glycated hemoglobin (HbA1c) was measured to confirm T2DM development. Dose dependent effects of orally administered AA (25 and 50 mg/kg/day) for 4 weeks was investigated by measuring BW variation, fasting and postprandial hyperglycemia, oral glucose tolerance test (OGTT), and levels of serum HbA1c, serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), serum and pancreatic C-peptide, insulin, growth differentiation factor 15 (GDF-15), serum and pancreatic inflammatory cytokines.

    RESULTS: The oral administration of AA in preclinical model of T2DM significantly normalized FBG and RBG, restored BW, controlled polyphagia, polydipsia and glucose tolerance. In addition, AA notably reduced serum HbA1c, TC, TG, LDL with non-significant increase in HDL. On the other hand, significant increase in serum and pancreatic C-peptide and insulin was observed with AA treatment, while serum and pancreatic GDF-15 were non-significantly altered in AA treated diabetic rats. Moreover, AA showed dose dependent reduction in serum and pancreatic proinflammatory cytokines including TNF-α, IL-1β and IL-6.

    CONCLUSION: For the first time our findings highlighted AA as a potential candidate in type 2 diabetic conditions.

    Matched MeSH terms: Inflammation/blood; Inflammation/drug therapy
  20. Bhatt S, Devadoss T, Jha NK, Baidya M, Gupta G, Chellappan DK, et al.
    Metab Brain Dis, 2023 Jan;38(1):45-59.
    PMID: 36239867 DOI: 10.1007/s11011-022-01095-1
    Major depressive disorder (MDD) or Depression is one of the serious neuropsychiatric disorders affecting over 280 million people worldwide. It is 4th important cause of disability, poor quality of life, and economic burden. Women are more affected with the depression as compared to men and severe depression can lead to suicide. Most of the antidepressants predominantly work through the modulation on the availability of monoaminergic neurotransmitter (NTs) levels in the synapse. Current antidepressants have limited efficacy and tolerability. Moreover, treatment resistant depression (TRD) is one of the main causes for failure of standard marketed antidepressants. Recently, inflammation has also emerged as a crucial factor in pathological progression of depression. Proinflammatory cytokine levels are increased in depressive patients. Antidepressant treatment may attenuate depression via modulation of pathways of inflammation, transformation in structure of brain, and synaptic plasticity. Hence, targeting inflammation may be emerged as an effective approach for the treatment of depression. The present review article will focus on the preclinical and clinical studies that targets inflammation. In addition, it also concentrates on the therapeutic approaches' that targets depression via influence on the inflammatory signaling pathways. Graphical abstract demonstrate the role of various factors in the progression and neuroinflammation, oxidative stress. It also exhibits the association of neuroinflammation, oxidative stress with depression.
    Matched MeSH terms: Inflammation/drug therapy; Inflammation/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links