METHODS: This was an in vivo study with quasi-experimental methods on 32 Wistar mice. Full-thickness wounds were made and then treated with mitomicyn-C. The mice were divided into 4 groups: a control group with NaCl 0.9% vitreous gel of cow eyeball (VGCE), 1% povidone-iodine, and a combination of VGCE and 1% povidone-iodine groups. Macroscopic and microscopic observations of the process of wound healing were performed on days 3, 7, and 14.
RESULTS: Vitreous gel administration produced significant wound healing rates within the first three days, and histological analysis revealed an increased number of fibroblasts and polymorphonuclear cells. However, the povidone iodine group and the combination group with vitreous gel did not produce significant results.
CONCLUSION: The single administration of VGCE can accelerate the wound healing process, increase the number of fibroblasts, and reduce inflammation in a chronic wound model.
Methods: A retrospective study was conducted among patients with hyperthyroidism who received RAI therapy at Nuclear Medicine Clinic, Hospital Universiti Sains Malaysia (HUSM), Kelantan. Data regarding patients' demographics, gender, aetiology of hyperthyroidism, presence of autoantibodies, dose of RAI used and usage of antithyroid drug post RAI therapy were included in the analysis.
Results: Of a total of 167 screened patients, 137 subjects were eligible for this study. The incidence of hypothyroidism within one year of RAI therapy was 32.9%. Women were found to be less likely to develop hypothyroidism post RAI therapy (adjusted odds ratio, 0.406; 95% confidence interval: 0.181-0.908; p = 0.028). The usage of antithyroid drug post RAI was significantly associated with a lower incidence of hypothyroidism post RAI therapy (adjusted odds ratio, 0.188; 95% confidence interval: 0.081-0.438; p<0.001).
Conclusion: This study showed a high incidence of hypothyroidism within one-year post RAI therapy. Gender and usage of antithyroid drug post RAI therapy are significantly associated with the development of hypothyroidism.
Methods: The algorithm for an IDR of 2.22 gI·s-1 was developed based on the relationship between VCE and contrast volume in 141 patients; test bolus parameters and characteristics in 75 patients; and, tube voltage in a phantom study. The algorithm was retrospectively tested in 45 patients who underwent retrospectively ECG-gated CCTA with a 100 kVp protocol. Image quality, TID and radiation dose exposure were compared with those produced using the 120 kVp and routine contrast protocols.
Results: Age, sex, body surface area (BSA) and peak contrast enhancement (PCE) were significant predictors for VCE (P<0.05). A strong linear correlation was observed between VCE and contrast volume (r=0.97, P<0.05). The 100-to-120 kVp contrast enhancement conversion factor (Ec) was calculated at 0.81. Optimal VCE (250 to 450 HU) and diagnostic image quality were obtained with significant reductions in TID (32.1%) and radiation dose (38.5%) when using 100 kVp and personalized contrast volume calculation algorithm compared with 120 kVp and routine contrast protocols (P<0.05).
Conclusions: The proposed algorithm could significantly reduce TID and radiation exposure while maintaining optimal VCE and image quality in CCTA with 100 kVp protocol.