Displaying publications 101 - 120 of 983 in total

Abstract:
Sort:
  1. Mariana A, Santana Raj AS, Ho TM, Tan SN, Zuhaizam H
    Trop Biomed, 2008 Dec;25(3):217-24.
    PMID: 19287360
    Scanning electron microscope (SEM) images of two dust mites, Sturnophagoides brasiliensis and Sturnophagoides halterophilus, are presented to provide an improved visualization of the taxonomic characters of these mites. Sturnophagoides halterophilus can be differentiated from S. brasiliensis by their expanded genu and femur of leg I. The differences in morphology of male and female S. brasiliensis are also discussed.
    Matched MeSH terms: Microscopy, Electron, Scanning
  2. Huat JT, Leong YK, Lian HH
    J Food Prot, 2008 Dec;71(12):2453-9.
    PMID: 19244898
    This study examined whether the survival of Vibrio cholerae O1 on contaminated cooked rice was influenced by the type of rice. Vibrios survived unchanged on clumps of glutinous white rice (wet, grains adhered) held at room temperature for 24 h. On nonglutinous white rice (slightly moist, grains separate), 30% viable vibrios remained at 24 h. On nonglutinous brown rice (moist, separate, covered with a mucus-like substance), the number of vibrios increased 2.7-fold at 24 h. Survival rates of vibrios on the surfaces of a row of five cooked rice grains after 2 h of exposure at room temperature were 86, 29, 12, and 4% for glutinous rice, white rice, and the endosperm and pericarp of brown rice, respectively. (Each boiled brown rice grain surface was partly pericarp and partly endosperm, which became exposed by a rupture of the pericarp.) Covering each inoculated grain with a similar cooked rice grain surface increased the corresponding figures to 93, 99, 60, and 94%. Scanning electron microscopy revealed that each type of cooked grain surface possessed a distinct microtopography. For example, the surfaces of glutinous rice grains consisted of separated overlapping strips with many holes, while the pericarps of brown rice were flat interspersed with small pits. In conclusion, each type of boiled rice produced a distinct survival pattern of V. cholerae O1 caused by both the distinct gross features and the fine surface characteristics of the rice. The significance of this finding is that the type of rice consumed can be a factor in cholera transmission by contaminated rice.
    Matched MeSH terms: Microscopy, Electron, Scanning
  3. Ho WM, Ang LH, Lee DK
    J Environ Sci (China), 2008;20(11):1341-7.
    PMID: 19202874
    The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated. A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium. Results showed that Pb was found in the root, stem, and seed capsule of kenaf but not in the leaf. Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb. In Pb-spiked treatments, roots accumulated more than 85% of total plant Pb which implies that kenaf root can be an important sink for bioavailable Pb. Scanning transmission electron microscope (STEM) X-ray microanalysis confirmed that electron-dense deposits located along cell walls of kenaf roots were Pb precipitates. The ability of kenaf to tolerate Pb and avoid phytotoxicity could be attributed to the immobilization of Pb in the roots and hence the restriction of upward movement (translocation factor < 1). With the application of fertilizer, kenaf was also found to have higher biomass and subsequently higher bioaccumulation capacity, indicating its suitability for phytoremediation of Pb-contaminated site.
    Matched MeSH terms: Microscopy, Electron, Scanning Transmission
  4. Noraishah Othman, Muhd Noor Md Yunus, Siti Kartom Kamarudin, Abd Halim Shamsuddin, Siti Rozaimah, Zahirah Yaakob
    MyJurnal
    Production of carbon dioxide from degraded woods especially Karas or Aquilariella Malaccensis using integrated pyrolysis-combustion is important for radiocarbon dating application. The effects of pyrolysis temperatures (300-400 0 C), retention times (20-35 minutes) and flow rates of argon (400- 1000 ml/min) on the production of carbon dioxide were studied. The experiments were arranged according to a 2 3 response surface central composite statistical design (CSD). This response surface methodology (RSM) was used to assess factor interactions and empirical models regarding carbon dioxide yield. The optimized yield of carbon dioxide was 82.57% for Karas and the optimum reaction conditions are 300 0 C of pyrolysis temperature, 20 minutes retention time and 982ml/min flow rates of argon. Scanning electron microscope (SEM) and X-ray Diffraction (XRD) were conducted to assess the morphological characteristics of the woods and to look at the potential crystalline structure produced after the process took place, respectively.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Yam F, Hassan Z, Omar K
    This article reports on the studies of structural and optical properties of nanoporous GaN prepared by Pt assisted electro chemical etching. The porous GaN samples were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical transmission (OT). SEM images liang indicated that the density of the pores increased with etching duration, however, the etching duration has no significant effect on the size and shape of the pores. AFM measurements exhibited that the surface roughness was increased with etching durations, however, for long etching duration, the increase of the surface roughness became insignificant. OT measurements revealed that the increase of pore density would lead to the reduction of light transmission. The studies showed that the porosity could influence the structural and optical properties of the GaN.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Yap CC, Muhammad Yahaya, Muhamad Mat Salleh, Dee CF
    Sains Malaysiana, 2008;37:233-237.
    ZnO nanowires have been synthesized using a catalyst-free carbothermal reduction approach on SiO2-coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nanowires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nanowires was achieved by manipulating the reactants heating temperature from 700 to 1000 oC. It was found that the optimum temperature to synthesize high density and long ZnO nanowires was about 800 0C. The possible growth mechanism of ZnO nanowires is also proposed.
    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Ravi S, Peh KK, Darwis Y, Murthy BK, Singh TR, Mallikarjun C
    Indian J Pharm Sci, 2008 May-Jun;70(3):303-9.
    PMID: 20046737 DOI: 10.4103/0250-474X.42978
    The aim of the present work was to investigate the preparation of microspheres as potential drug carriers for proteins, intended for controlled release formulation. The hydrophilic bovine serum albumin was chosen as a model protein to be encapsulated within poly(D,L-lactide-co-glycolide) (50:50) microspheres using a w/o/w double emulsion solvent evaporation method. Different parameters influencing the particle size, entrapment efficiency and in vitro release profiles were investigated. The microspheres prepared with different molecular weight and hydrophilicity of poly(D,L-lactide-co-glycolide) polymers were non porous, smooth surfaced and spherical in structure under scanning electron microscope with a mean particle size ranging from 3.98 to 8.74 mum. The protein loading efficiency varied from 40 to 71% of the theoretical amount incorporated. The in vitro release profile of bovine serum albumin from microspheres presented two phases, initial burst release phase due to the protein adsorbed on the microsphere surface, followed by slower and continuous release phase corresponding to the protein entrapped in polymer matrix. The release rate was fairly constant after an initial burst release. Consequently, these microspheres can be proposed as new controlled release protein delivery system.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2009 Jan 15;161(1):570-4.
    PMID: 18462871 DOI: 10.1016/j.jhazmat.2008.03.097
    This paper examines the effectiveness of 10 additives toward improving SO2 sorption capacities (SSC) of rice husk ash (RHA)/lime (CaO) sorbent. The additives examined are NaOH, CaCl2, LiCl, NaHCO3, NaBr, BaCl2, KOH, K2HPO4, FeCl3 and MgCl2. Most of the additives tested increased the SSC of RHA/CaO sorbent, whereby NaOH gave highest SSC (30mg SO2/g sorbent) at optimum concentration (0.25mol/l) compared to other additives examined. The SSC of RHA/CaO sorbent prepared with NaOH addition was also increases from 17.2 to 39.5mg SO2/g sorbent as the water vapor increases from 0% RH to 80% RH. This is probably due to the fact that most of additives tested act as deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, which played an important role in the reaction between the dry-type sorbent and SO2. Although most of the additives were shown to have positive effect on the SSC of the RHA/CaO sorbent, some were found to have negative or insignificant effect. Thus, this study demonstrates that proper selection of additives can improve the SSC of RHA/CaO sorbent significantly.
    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Hameed BH
    J Hazard Mater, 2009 Jan 30;161(2-3):753-9.
    PMID: 18499346 DOI: 10.1016/j.jhazmat.2008.04.019
    In the present study, spent tea leaves (STL) were used as a new non-conventional and low-cost adsorbent for the cationic dye (methylene blue) adsorption in a batch process at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to the Langmuir isotherm and the monolayer adsorption capacity was found to be 300.052mg/g at 30 degrees C. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The results revealed that the spent tea leaves, being waste, have the potential to be used as a low-cost adsorbent for the removal of methylene blue from aqueous solutions.
    Matched MeSH terms: Microscopy, Electron, Scanning
  10. Desjardin DE, Wilson AW, Binder M
    Mycologia, 2009 2 11;100(6):956-61.
    PMID: 19202849
    Hydnangium echinulatum, described originally from a single specimen collected in Malaysia, has been recollected, and based on morphological and molecular characters is recognized as representing a new gasteroid genus of boletes with affinities to the Boletineae, herein named Durianella. Diagnostic features include an epigeous, ovoid, pyramidal-warted, durian fruit-like basidiome with gelatinized glebal locules and a columella that turns indigo blue upon exposure, and subglobose basidiospores with long, curved, thin-walled and collapsible spines. A redescription, phylogenetic analysis and comparison with allied taxa are presented.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Hameed BH, Krishni RR, Sata SA
    J Hazard Mater, 2009 Feb 15;162(1):305-11.
    PMID: 18573607 DOI: 10.1016/j.jhazmat.2008.05.036
    In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.
    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Hameed BH, Salman JM, Ahmad AL
    J Hazard Mater, 2009 Apr 15;163(1):121-6.
    PMID: 18667269 DOI: 10.1016/j.jhazmat.2008.06.069
    In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R(2)>or=0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.
    Matched MeSH terms: Microscopy, Electron, Scanning
  13. Sim KS, Ting HY, Lai MA, Tso CP
    J Microsc, 2009 Jun;234(3):243-50.
    PMID: 19493101 DOI: 10.1111/j.1365-2818.2009.03167.x
    An improvement to the previously proposed Canny optimization technique for scanning electron microscope image colorization is reported. The additional process is adaptive tuning, where colour tuning is performed adaptively, based on comparing the original luminance values with calculated luminance values. The complete adaptive Canny optimization technique gives significantly better mechanical contrast on scanning electron microscope grey-scale images than do existing methods.
    Matched MeSH terms: Microscopy, Electron, Scanning/methods*
  14. Sangetha S, Zuraini Z, Suryani S, Sasidharan S
    Micron, 2009 Jun;40(4):439-43.
    PMID: 19261482 DOI: 10.1016/j.micron.2009.01.003
    The inhibitory effect of Cassia spectabilis methanol leaf extract was evaluated against biofilm forming Candida albicans, which was sensitive to 6.25 mg/ml concentration of the extract. Transmission (TEM) and scanning electron microscope (SEM) observations were used to study the anticandidal activity and prevention of biofilm formation by the C. spectabilis extract. SEM analysis further revealed reduction in C. albicans biofilm in response to the extract. The main abnormalities noted via TEM study was the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The significant antifungal activity shown by this methanol extract of C. spectabilis suggests its potential against infections caused by C. albicans.
    Matched MeSH terms: Microscopy, Electron, Scanning
  15. Wan Mohd Zain WN, Rahmat A, Othman F, Yap TY
    Malays J Med Sci, 2009 Jul;16(3):29-34.
    PMID: 22589662 MyJurnal
    CLAUSINE B, A CARBAZOLE ALKALOID ISOLATED FROM THE STEM BARK OF CLAUSENA EXCAVATA, WAS INVESTIGATED FOR ITS ANTIPROLIFERATIVE ACTIVITIES AGAINST FIVE HUMAN CANCER CELL LINES: HepG2 (hepatic cancer), MCF-7 (hormone-dependent breast cancer), MDA-MB-231 (non-hormone-dependent breast cancer), HeLa (cervical cancer), and CAOV3 (ovarian cancer).
    Matched MeSH terms: Microscopy, Electron, Scanning Transmission
  16. Hussein MZ, Azmin WH, Mustafa M, Yahaya AH
    J Inorg Biochem, 2009 Aug;103(8):1145-50.
    PMID: 19577306 DOI: 10.1016/j.jinorgbio.2009.05.016
    Currently the development of green chemistry approach with the use of biomaterial-based activities of microbial cells in the synthesis of various nanostructures has attracted a great attention. In this study, we report on the use of bacterium, Bacillus cereus as a biotemplating agent for the formation of zinc oxide nanoparticles with raspberry- and plate-like structures through a simple thermal decomposition of zinc acetate by maintaining the original pH of the reaction mixtures. Possible mechanism on the formation of the nanostructures is proposed based on the surface chemistry and biochemistry processes involved organic-inorganic interactions between zinc oxide and the microbial cells.
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Kamilla L, Mansor SM, Ramanathan S, Sasidharan S
    Microsc Microanal, 2009 Aug;15(4):366-72.
    PMID: 19575837 DOI: 10.1017/S1431927609090783
    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Chew FN, Tan WS, Ling TC, Tey BT
    Electrophoresis, 2009 Sep;30(17):3017-3023.
    PMID: 19685471 DOI: 10.1002/elps.200900246
    Mechanical and non-mechanical breakages of bacterial cells are usually the preliminary steps in intracellular protein purification. In this study, the recombinant green fluorescent protein (GFP) was purified from intact Escherichia coli cells using preparative PAGE. In this purification process, cells disruption step is not needed. The cellular content of E. coli was drifted out electrically from cells and the negatively charged GFP was further electroeluted from polyacrylamide gel column. SEM investigation of the electrophoresed cells revealed substantial structural damage at the cellular level. This integrated purification technique has successfully recovered the intracellular GFP with a yield of 82% and purity of 95%.
    Matched MeSH terms: Microscopy, Electron, Scanning
  19. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Kamari A, Ngah WS
    Colloids Surf B Biointerfaces, 2009 Oct 15;73(2):257-66.
    PMID: 19556114 DOI: 10.1016/j.colsurfb.2009.05.024
    The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H(2)SO(4) modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin-Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (R(L)) indicated that chitosan-H(2)SO(4) was favorable for Pb(II) and Cu(II) adsorption.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links