Displaying publications 101 - 120 of 405 in total

Abstract:
Sort:
  1. Teh LK, Langmia IM, Fazleen Haslinda MH, Ngow HA, Roziah MJ, Harun R, et al.
    J Clin Pharm Ther, 2012 Apr;37(2):232-6.
    PMID: 21507031 DOI: 10.1111/j.1365-2710.2011.01262.x
    Testing for cytochrome P450-2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) variant alleles is recommended by the FDA for dosing of warfarin. However, dose prediction models derived from data obtained in one population may not be applicable to another. We therefore studied the impact of genetic polymorphisms of CYP2C9 and VKORC1 on warfarin dose requirement in Malaysia.
    Matched MeSH terms: Models, Biological
  2. Faisal T, Taib MN, Ibrahim F
    J Med Syst, 2012 Apr;36(2):661-76.
    PMID: 20703665 DOI: 10.1007/s10916-010-9532-x
    With the dramatic increase of the worldwide threat of dengue disease, it has been very crucial to correctly diagnose the dengue patients in order to decrease the disease severity. However, it has been a great challenge for the physicians to identify the level of risk in dengue patients due to overlapping of the medical classification criteria. Therefore, this study aims to construct a noninvasive diagnostic system to assist the physicians for classifying the risk in dengue patients. Systematic producers have been followed to develop the system. Firstly, the assessment of the significant predictors associated with the level of risk in dengue patients was carried out utilizing the statistical analyses technique. Secondly, Multilayer perceptron neural network models trained via Levenberg-Marquardt and Scaled Conjugate Gradient algorithms was employed for constructing the diagnostic system. Finally, precise tuning for the models' parameters was conducted in order to achieve the optimal performance. As a result, 9 noninvasive predictors were found to be significantly associated with the level of risk in dengue patients. By employing those predictors, 75% prediction accuracy has been achieved for classifying the risk in dengue patients using Scaled Conjugate Gradient algorithm while 70.7% prediction accuracy were achieved by using Levenberg-Marquardt algorithm.
    Matched MeSH terms: Models, Biological
  3. Abd Latif MJ, Jin Z, Wilcox RK
    J Biomech, 2012 May 11;45(8):1346-52.
    PMID: 22483055 DOI: 10.1016/j.jbiomech.2012.03.015
    The spinal facet joints are known to be an important component in the kinematics and the load transmission of the spine. The articular cartilage in the facet joint is prone to degenerative changes which lead to back pain and treatments for the condition have had limited long term success. There is currently a lack of information on the basic biomechanical properties of the facet joint cartilage which is needed to develop tissue substitution or regenerative interventions. In the present study, the thickness and biphasic properties of ovine facet cartilage were determined using a combination of indentation tests and computational modelling. The equilibrium biphasic Young's modulus and permeability were derived to be 0.76±0.35 MPa and 1.61±1.10×10⁻¹⁵ m⁴/(Ns) respectively, which were within the range of cartilage properties characterised from the human synovial joints. The average thickness of the ovine facet cartilage was 0.52±0.10 mm, which was measured using a needle indentation test. These properties could potentially be used for the development of substitution or tissue engineering interventions and for computational modelling of the facet joint. Furthermore, the developed method to characterise the facet cartilage could be used for other animals or human donors.
    Matched MeSH terms: Models, Biological*
  4. Oh WD, Lim PE, Seng CE, Sujari AN
    Bioresour Technol, 2012 Jun;114:179-87.
    PMID: 22503192 DOI: 10.1016/j.biortech.2012.03.065
    A kinetic model incorporating adsorption, desorption and biodegradation processes was developed to describe the bioregeneration of granular activated carbon (GAC) loaded with 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, in simultaneous adsorption and biodegradation processes. The model was numerically solved and the results showed that the kinetic model was well-fitted (R(2)>0.83) to the experimental data at different GAC dosages and at various initial 4-CP and 2,4-DCP concentrations. The rate of bioregeneration in simultaneous adsorption and biodegradation processes was influenced by the ratio of initial chlorophenol concentration to GAC dosage. Enhancement in the rate of bioregeneration was achieved by using the lowest ratio under either one of the following experimental conditions: (1) increasing initial chlorophenol concentration at constant GAC dosage and (2) increasing GAC dosage at constant initial chlorophenol concentration. It was found that the rate enhancement was more pronounced under the second experimental condition.
    Matched MeSH terms: Models, Biological*
  5. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    J Dent, 2012 Jun;40(6):467-74.
    PMID: 22366313 DOI: 10.1016/j.jdent.2012.02.009
    The aim of this study was to analyse micromotion and stress distribution at the connections of implants and four types of abutments: internal hexagonal, internal octagonal, internal conical and trilobe.
    Matched MeSH terms: Models, Biological
  6. Shehu MS, Abdul Manan Z, Alwi SR
    Bioresour Technol, 2012 Jun;114:69-74.
    PMID: 22444634 DOI: 10.1016/j.biortech.2012.02.135
    Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield was carried out using response surface methodology (RSM) and Box-Behnken design of experiment. The individual linear and quadratic effects as well as the interactive effects of temperature, NaOH concentration and time on the degree of disintegration were investigated. The optimum degree of disintegration achieved was 61.45% at 88.50 °C, 2.29 M NaOH (24.23%w/w total solids) and 21 min retention time. Linear and quadratic effects of temperature are most significant in affecting the degree of disintegration. The coefficient of determination (R(2)) of 99.5% confirms that the model used in predicting the degree of disintegration process has a very good fitness with the experimental variables. The disintegrated sludge increased the biogas yield by 36%v/v compared to non-disintegrated sludge. The RSM with Box-Behnken design is an effective tool in predicting the optimum degree of disintegration of sewage sludge for increased biogas yield.
    Matched MeSH terms: Models, Biological*
  7. Goonasegaran AR, Nabila FN, Shuhada NS
    Singapore Med J, 2012 Jun;53(6):403-8.
    PMID: 22711041
    Body mass index (BMI) has limited diagnostic performance due to its inability to discriminate between fat and lean mass. This study was conducted to compare the effectiveness of body fat percentage (BFP) against BMI in defining body composition.
    Matched MeSH terms: Models, Biological
  8. Ya'aini N, Amin NA, Asmadi M
    Bioresour Technol, 2012 Jul;116:58-65.
    PMID: 22609656 DOI: 10.1016/j.biortech.2012.03.097
    Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised of chromium chloride and HY zeolite increased the levulinic acid production from glucose compared to the parent catalysts. Optimization of the glucose conversion process using two level full factorial designs (2(3)) with two center points reported 55.2% of levulinic acid yield at 145.2 °C, 146.7 min and 12.0% of reaction temperature, reaction time and catalyst loading, respectively. Subsequently, the potential of efb and kenaf for producing levulinic acid at the optimum conditions was established after 53.2% and 66.1% of efficiencies were reported. The observation suggests that the hybrid catalyst has a potential to be used in biomass conversion to levulinic acid.
    Matched MeSH terms: Models, Biological
  9. Bajuri MN, Kadir MR, Amin IM, Ochsner A
    Proc Inst Mech Eng H, 2012 Jul;226(7):510-20.
    PMID: 22913098 DOI: 10.1177/0954411912445846
    The wrist is the most complex joint for virtual three-dimensional simulations, and the complexity is even more pronounced when dealing with skeletal disorders of the joint such, as rheumatoid arthritis (RA). In order to analyse the biomechanical difference between healthy and diseased joints, three-dimensional models of these two wrist conditions were developed from computed tomography images. These images consist of eight carpal bones, five metacarpal bones, the distal radius and ulna. The cartilages were developed based on the shape of the available articulations and ligaments were simulated via mechanical links. The RA model was developed accurately by simulating all ten common criteria of the disease related to the wrist. Results from the finite element (FE) analyses showed that the RA model produced three times higher contact pressure at the articulations compared to the healthy model. Normal physiological load transfer also changed from predominantly through the radial side to an increased load transfer approximately 5% towards the ulnar. Based on an extensive literature search, this is the first ever reported work that simulates the pathological conditions of the rheumatoid arthritis of the wrist joint.
    Matched MeSH terms: Models, Biological*
  10. Ooi HL, Wu LL
    Singapore Med J, 2012 Jul;53(7):e142-4.
    PMID: 22815030
    Neonatal diabetes mellitus (DM) is defined as insulin-requiring DM in the first six months of life. Unlike type 1 DM, it is a monogenic disorder resulting from a de novo mutation in the genes involved in the development of the pancreas, β-cell mass or secretory function. The majority of neonatal DM cases are caused by a heterozygous activating mutation in the KCNJ11 or ABCC8 genes that encode the Kir6.2 and SUR1 protein subunits, respectively, in the KATP channel. Sulphonylurea, a KATP channel inhibitor, can restore insulin secretion, hence offering an attractive alternative to insulin therapy. We report three cases of neonatal DM and their genetic mutations. Two patients were successfully switched over to sulphonylurea monotherapy with resultant improvement in the quality of life and a more stable blood glucose profile. Patients with neonatal DM should undergo genetic evaluation. For patients with KCNJ11 and ABCC8 gene mutation, oral sulphonylurea should be considered.
    Matched MeSH terms: Models, Biological
  11. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
    Matched MeSH terms: Models, Biological
  12. Wong YM, Brigham CJ, Rha C, Sinskey AJ, Sudesh K
    Bioresour Technol, 2012 Oct;121:320-7.
    PMID: 22858502 DOI: 10.1016/j.biortech.2012.07.015
    The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties.
    Matched MeSH terms: Models, Biological
  13. Pai YJ, Abdullah NL, Mohd-Zin SW, Mohammed RS, Rolo A, Greene ND, et al.
    PMID: 22945349 DOI: 10.1002/bdra.23072
    Adhesion and fusion of epithelial sheets marks the completion of many morphogenetic events during embryogenesis. Neural tube closure involves an epithelial fusion sequence in which the apposing neural folds adhere initially via cellular protrusions, proceed to a more stable union, and subsequently undergo remodeling of the epithelial structures to yield a separate neural tube roof plate and overlying nonneural ectoderm. Cellular protrusions comprise lamellipodia and filopodia, and studies in several different systems emphasize the critical role of RhoGTPases in their regulation. How epithelia establish initial adhesion is poorly understood but, in neurulation, may involve interactions between EphA receptors and their ephrinA ligands. Epithelial remodeling is spatially and temporally correlated with apoptosis in the dorsal neural tube midline, but experimental inhibition of this cell death does not prevent fusion and remodeling. A variety of molecular signaling systems have been implicated in the late events of morphogenesis, but genetic redundancy, for example among the integrins and laminins, makes identification of the critical players challenging. An improved understanding of epithelial fusion can provide insights into normal developmental processes and may also indicate the mode of origin of clinically important birth defects.
    Matched MeSH terms: Models, Biological
  14. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I
    Geospat Health, 2012 Nov;7(1):27-36.
    PMID: 23242678
    Malaria remains a major health problem in Sudan. With a population exceeding 39 million, there are around 7.5 million cases and 35,000 deaths every year. The predicted distribution of malaria derived from climate factors such as maximum and minimum temperatures, rainfall and relative humidity was compared with the actual number of malaria cases in Sudan for the period 2004 to 2010. The predictive calculations were done by fuzzy logic suitability (FLS) applied to the numerical distribution of malaria transmission based on the life cycle characteristics of the Anopheles mosquito accounting for the impact of climate factors on malaria transmission. This information is visualized as a series of maps (presented in video format) using a geographical information systems (GIS) approach. The climate factors were found to be suitable for malaria transmission in the period of May to October, whereas the actual case rates of malaria were high from June to November indicating a positive correlation. While comparisons between the prediction model for June and the case rate model for July did not show a high degree of association (18%), the results later in the year were better, reaching the highest level (55%) for October prediction and November case rate.
    Matched MeSH terms: Models, Biological
  15. Hassan H, Shohaimi S, Hashim NR
    Geospat Health, 2012 Nov;7(1):21-5.
    PMID: 23242677
    Dengue fever is a recurring public health problem afflicting thousands of Malaysians annually. In this paper, the risk map for dengue fever in the peninsular Malaysian states of Selangor and Kuala Lumpur was modelled based on co-kriging and geographical information systems. Using population density and rainfall as the model's only input factors, the area with the highest risk for dengue infection was given as Gombak and Petaling, two districts located on opposite sides of Kuala Lumpur city that was also included in the risk assessment. Comparison of the modelled risk map with the dengue case dataset of 2010, obtained from the Ministry of Health of Malaysia, confirmed that the highest number of cases had been found in an area centred on Kuala Lumpur as predicted our risk profiling.
    Matched MeSH terms: Models, Biological
  16. Chan YJ, Chong MF, Law CL
    Bioresour Technol, 2012 Dec;125:145-57.
    PMID: 23026327 DOI: 10.1016/j.biortech.2012.08.118
    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system.
    Matched MeSH terms: Models, Biological*
  17. Clements GR, Rayan DM, Aziz SA, Kawanishi K, Traeholt C, Magintan D, et al.
    Integr Zool, 2012 Dec;7(4):400-406.
    PMID: 23253371 DOI: 10.1111/j.1749-4877.2012.00314.x
    In 2008, the IUCN threat status of the Asian tapir (Tapirus indicus) was reclassified from 'vulnerable' to 'endangered'. The latest distribution map from the IUCN Red List suggests that the tapirs' native range is becoming increasingly fragmented in Peninsular Malaysia, but distribution data collected by local researchers suggest a more extensive geographical range. Here, we compile a database of 1261 tapir occurrence records within Peninsular Malaysia, and demonstrate that this species, indeed, has a much broader geographical range than the IUCN range map suggests. However, extreme spatial and temporal bias in these records limits their utility for conservation planning. Therefore, we used maximum entropy (MaxEnt) modeling to elucidate the potential extent of the Asian tapir's occurrence in Peninsular Malaysia while accounting for bias in existing distribution data. Our MaxEnt model predicted that the Asian tapir has a wider geographic range than our fine-scale data and the IUCN range map both suggest. Approximately 37% of Peninsular Malaysia contains potentially suitable tapir habitats. Our results justify a revision to the Asian tapir's extent of occurrence in the IUCN Red List. Furthermore, our modeling demonstrated that selectively logged forests encompass 45% of potentially suitable tapir habitats, underscoring the importance of these habitats for the conservation of this species in Peninsular Malaysia.
    Matched MeSH terms: Models, Biological*
  18. Chai WL, Brook IM, Palmquist A, van Noort R, Moharamzadeh K
    J R Soc Interface, 2012 Dec 7;9(77):3528-38.
    PMID: 22915635 DOI: 10.1098/rsif.2012.0507
    For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant-soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant-soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS). This study compares the quality of the BS achieved using the three-dimensional OMM for four types of Ti surfaces: polished, machined, sandblasted and anodized (TiUnite). The BS was evaluated quantitatively by permeability and cell attachment tests. Tritiated water (HTO) was used as the tracing agent for the permeability test. At the end of the permeability test, the Ti discs were removed from the three-dimensional OMM and an Alamar Blue assay was used for the measurement of residual cells attached to the Ti discs. The penetration of the HTO through the BS for the four types of Ti surfaces was not significantly different, and there was no significant difference in the viability of residual cells that attached to the Ti surfaces. The BS of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different.
    Matched MeSH terms: Models, Biological*
  19. Gaeid KS, Ping HW, Khalid M, Masaoud A
    Sensors (Basel), 2012;12(4):4031-50.
    PMID: 22666016 DOI: 10.3390/s120404031
    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state.
    Matched MeSH terms: Models, Biological
  20. Nourouzi MM, Chuah TG, Choong TS, Rabiei F
    J Environ Sci Health B, 2012;47(5):455-65.
    PMID: 22424071 DOI: 10.1080/03601234.2012.663603
    An artificial neural network (ANN) model was developed to simulate the biodegradation of herbicide glyphosate [2-(Phosphonomethylamino) acetic acid] in a solution with varying parameters pH, inoculum size and initial glyphosate concentration. The predictive ability of ANN model was also compared with Monod model. The result showed that ANN model was able to accurately predict the experimental results. A low ratio of self-inhibition and half saturation constants of Haldane equations (< 8) exhibited the inhibitory effect of glyphosate on bacteria growth. The value of K(i)/K(s) increased when the mixed inoculum size was increased from 10(4) to 10(6) bacteria/mL. It was found that the percentage of glyphosate degradation reached a maximum value of 99% at an optimum pH 6-7 while for pH values higher than 9 or lower than 4, no degradation was observed.
    Matched MeSH terms: Models, Biological
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links