Displaying publications 101 - 120 of 472 in total

Abstract:
Sort:
  1. Mohammed MF, Lim CP
    Neural Netw, 2017 Feb;86:69-79.
    PMID: 27890606 DOI: 10.1016/j.neunet.2016.10.012
    In this paper, we extend our previous work on the Enhanced Fuzzy Min-Max (EFMM) neural network by introducing a new hyperbox selection rule and a pruning strategy to reduce network complexity and improve classification performance. Specifically, a new k-nearest hyperbox expansion rule (for selection of a new winning hyperbox) is first introduced to reduce the network complexity by avoiding the creation of too many small hyperboxes within the vicinity of the winning hyperbox. A pruning strategy is then deployed to further reduce the network complexity in the presence of noisy data. The effectiveness of the proposed network is evaluated using a number of benchmark data sets. The results compare favorably with those from other related models. The findings indicate that the newly introduced hyperbox winner selection rule coupled with the pruning strategy are useful for undertaking pattern classification problems.
    Matched MeSH terms: Neural Networks (Computer)*
  2. Naidu K, Ali MS, Abu Bakar AH, Tan CK, Arof H, Mokhlis H
    PLoS One, 2020;15(1):e0227494.
    PMID: 31999711 DOI: 10.1371/journal.pone.0227494
    This paper proposes an approach to accurately estimate the impedance value of a high impedance fault (HIF) and the distance from its fault location for a distribution system. Based on the three-phase voltage and current waveforms which are monitored through a single measurement in the network, several features are extracted using discrete wavelet transform (DWT). The extracted features are then fed into the optimized artificial neural network (ANN) to estimate the HIF impedance and its distance. The particle swarm optimization (PSO) technique is employed to optimize the parameters of the ANN to enhance the performance of fault impedance and distance estimations. Based on the simulation results, the proposed method records encouraging results compared to other methods of similar complexity for both HIF impedance values and estimated distances.
    Matched MeSH terms: Neural Networks (Computer)*
  3. Zafar R, Dass SC, Malik AS
    PLoS One, 2017;12(5):e0178410.
    PMID: 28558002 DOI: 10.1371/journal.pone.0178410
    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.
    Matched MeSH terms: Neural Networks (Computer)*
  4. Masuyama N, Loo CK, Dawood F
    Neural Netw, 2018 Feb;98:76-86.
    PMID: 29202265 DOI: 10.1016/j.neunet.2017.11.003
    Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively.
    Matched MeSH terms: Neural Networks (Computer)*
  5. Cimr D, Fujita H, Tomaskova H, Cimler R, Selamat A
    Comput Methods Programs Biomed, 2023 Feb;229:107277.
    PMID: 36463672 DOI: 10.1016/j.cmpb.2022.107277
    BACKGROUND AND OBJECTIVES: Nowadays, an automated computer-aided diagnosis (CAD) is an approach that plays an important role in the detection of health issues. The main advantages should be in early diagnosis, including high accuracy and low computational complexity without loss of the model performance. One of these systems type is concerned with Electroencephalogram (EEG) signals and seizure detection. We designed a CAD system approach for seizure detection that optimizes the complexity of the required solution while also being reusable on different problems.

    METHODS: The methodology is built-in deep data analysis for normalization. In comparison to previous research, the system does not necessitate a feature extraction process that optimizes and reduces system complexity. The data classification is provided by a designed 8-layer deep convolutional neural network.

    RESULTS: Depending on used data, we have achieved the accuracy, specificity, and sensitivity of 98%, 98%, and 98.5% on the short-term Bonn EEG dataset, and 96.99%, 96.89%, and 97.06% on the long-term CHB-MIT EEG dataset.

    CONCLUSIONS: Through the approach to detection, the system offers an optimized solution for seizure diagnosis health problems. The proposed solution should be implemented in all clinical or home environments for decision support.

    Matched MeSH terms: Neural Networks (Computer)*
  6. Qi X, He X, Chen SW, Hai T
    PLoS One, 2024;19(5):e0293517.
    PMID: 38743798 DOI: 10.1371/journal.pone.0293517
    As a UNESCO World Cultural Heritage, the aesthetic value of bronze artifacts from the Shang and Chow Dynasties has had a profound influence on Chinese traditional culture and art. To facilitate the digital preservation and protection of these Shang and Chow bronze artifacts (SCB), it becomes imperative to categorize their decorative patterns. Therefore, a SCB pattern classification method of differential evolution called Shang and Chow Bronze Convolutional Neural Network (SCB-CNN) is proposed. Firstly, the original bronze decorative patterns of Shang and Chow dynasties are collected, and the samples are expanded through image augmentation technology to form a training dataset. Secondly, based on the classical convolutional neural network structure, the recognition and classification of bronze patterns are implemented by adjusting the network parameters. Then, the initial parameters of the convolutional neural network are optimized by differential evolution algorithm, and the optimized SCB-CNN is simulated. Finally, comparative experiments were conducted between the optimized SCB-CNN, the unoptimized model, VGG-Net, and GoogleNet. The experimental results indicate that the optimized SCB-CNN significantly reduces training time while maintaining fast prediction speed, convergence speed, and high accuracy. This study provides new insights for the inheritance and innovation research of SCB patterns.
    Matched MeSH terms: Neural Networks (Computer)*
  7. Thiagarajan JD, Kulkarni SV, Jadhav SA, Waghe AA, Raja SP, Rajagopal S, et al.
    Sci Rep, 2024 Jul 01;14(1):15041.
    PMID: 38951552 DOI: 10.1038/s41598-024-63930-y
    The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.
    Matched MeSH terms: Neural Networks (Computer)*
  8. AlDahoul N, Karim HA, Momo MA, Escobar FIF, Magallanes VA, Tan MJT
    Sci Rep, 2023 Sep 02;13(1):14475.
    PMID: 37660120 DOI: 10.1038/s41598-023-41711-3
    Intestinal parasitic infections (IPIs) caused by protozoan and helminth parasites are among the most common infections in humans in low-and-middle-income countries. IPIs affect not only the health status of a country, but also the economic sector. Over the last decade, pattern recognition and image processing techniques have been developed to automatically identify parasitic eggs in microscopic images. Existing identification techniques are still suffering from diagnosis errors and low sensitivity. Therefore, more accurate and faster solution is still required to recognize parasitic eggs and classify them into several categories. A novel Chula-ParasiteEgg dataset including 11,000 microscopic images proposed in ICIP2022 was utilized to train various methods such as convolutional neural network (CNN) based models and convolution and attention (CoAtNet) based models. The experiments conducted show high recognition performance of the proposed CoAtNet that was tuned with microscopic images of parasitic eggs. The CoAtNet produced an average accuracy of 93%, and an average F1 score of 93%. The finding opens door to integrate the proposed solution in automated parasitological diagnosis.
    Matched MeSH terms: Neural Networks (Computer)*
  9. Liu H, Huang J, Li Q, Guan X, Tseng M
    Artif Intell Med, 2024 Feb;148:102776.
    PMID: 38325925 DOI: 10.1016/j.artmed.2024.102776
    This study proposes a deep convolutional neural network for the automatic segmentation of glioblastoma brain tumors, aiming sat replacing the manual segmentation method that is both time-consuming and labor-intensive. There are many challenges for automatic segmentation to finely segment sub-regions from multi-sequence magnetic resonance images because of the complexity and variability of glioblastomas, such as the loss of boundary information, misclassified regions, and subregion size. To overcome these challenges, this study introduces a spatial pyramid module and attention mechanism to the automatic segmentation algorithm, which focuses on multi-scale spatial details and context information. The proposed method has been tested in the public benchmarks BraTS 2018, BraTS 2019, BraTS 2020 and BraTS 2021 datasets. The Dice score on the enhanced tumor, whole tumor, and tumor core were respectively 79.90 %, 89.63 %, and 85.89 % on the BraTS 2018 dataset, respectively 77.14 %, 89.58 %, and 83.33 % on the BraTS 2019 dataset, and respectively 77.80 %, 90.04 %, and 83.18 % on the BraTS 2020 dataset, and respectively 83.48 %, 90.70 %, and 88.94 % on the BraTS 2021 dataset offering performance on par with that of state-of-the-art methods with only 1.90 M parameters. In addition, our approach significantly reduced the requirements for experimental equipment, and the average time taken to segment one case was only 1.48 s; these two benefits rendered the proposed network intensely competitive for clinical practice.
    Matched MeSH terms: Neural Networks (Computer)*
  10. Waheeb W, Ghazali R, Herawan T
    PLoS One, 2016;11(12):e0167248.
    PMID: 27959927 DOI: 10.1371/journal.pone.0167248
    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.
    Matched MeSH terms: Neural Networks (Computer)*
  11. Wong PC, Abdullah SS, Shapiai MI
    Sci Rep, 2024 Jul 24;14(1):17037.
    PMID: 39043757 DOI: 10.1038/s41598-024-66874-5
    The classification of Alzheimer's disease (AD) using deep learning models is hindered by the limited availability of data. Medical image datasets are scarce due to stringent regulations on patient privacy, preventing their widespread use in research. Moreover, although open-access databases such as the Open Access Series of Imaging Studies (OASIS) are available publicly for providing medical image data for research, they often suffer from imbalanced classes. Thus, to address the issue of insufficient data, this study proposes the integration of a generative adversarial network (GAN) that can achieve comparable accuracy with a reduced data requirement. GANs are unsupervised deep learning networks commonly used for data augmentation that generate high-quality synthetic data to overcome data scarcity. Experimental data from the OASIS database are used in this research to train the GAN model in generating synthetic MRI data before being included in a pretrained convolutional neural network (CNN) model for multistage AD classification. As a result, this study has demonstrated that a multistage AD classification accuracy above 80% can be achieved even with a reduced dataset. The exceptional performance of GANs positions them as a solution for overcoming the challenge of insufficient data in AD classification.
    Matched MeSH terms: Neural Networks (Computer)*
  12. Oyelade ON, Ezugwu AE, Almutairi MS, Saha AK, Abualigah L, Chiroma H
    Sci Rep, 2022 Apr 13;12(1):6166.
    PMID: 35418566 DOI: 10.1038/s41598-022-09929-9
    Deep learning (DL) models are becoming pervasive and applicable to computer vision, image processing, and synthesis problems. The performance of these models is often improved through architectural configuration, tweaks, the use of enormous training data, and skillful selection of hyperparameters. The application of deep learning models to medical image processing has yielded interesting performance, capable of correctly detecting abnormalities in medical digital images, making them surpass human physicians. However, advancing research in this domain largely relies on the availability of training datasets. These datasets are sometimes not publicly accessible, insufficient for training, and may also be characterized by a class imbalance among samples. As a result, inadequate training samples and difficulty in accessing new datasets for training deep learning models limit performance and research into new domains. Hence, generative adversarial networks (GANs) have been proposed to mediate this gap by synthesizing data similar to real sample images. However, we observed that benchmark datasets with regions of interest (ROIs) for characterizing abnormalities in breast cancer using digital mammography do not contain sufficient data with a fair distribution of all cases of abnormalities. For instance, the architectural distortion and breast asymmetry in digital mammograms are sparsely distributed across most publicly available datasets. This paper proposes a GAN model, named ROImammoGAN, which synthesizes ROI-based digital mammograms. Our approach involves the design of a GAN model consisting of both a generator and a discriminator to learn a hierarchy of representations for abnormalities in digital mammograms. Attention is given to architectural distortion, asymmetry, mass, and microcalcification abnormalities so that training distinctively learns the features of each abnormality and generates sufficient images for each category. The proposed GAN model was applied to MIAS datasets, and the performance evaluation yielded a competitive accuracy for the synthesized samples. In addition, the quality of the images generated was also evaluated using PSNR, SSIM, FSIM, BRISQUE, PQUE, NIQUE, FID, and geometry scores. The results showed that ROImammoGAN performed competitively with state-of-the-art GANs. The outcome of this study is a model for augmenting CNN models with ROI-centric image samples for the characterization of abnormalities in breast images.
    Matched MeSH terms: Neural Networks (Computer)*
  13. Waqas S, Harun NY, Arshad U, Laziz AM, Sow Mun SL, Bilad MR, et al.
    Chemosphere, 2024 Feb;349:140830.
    PMID: 38056711 DOI: 10.1016/j.chemosphere.2023.140830
    Membrane fouling is a critical bottleneck to the widespread adoption of membrane separation processes. It diminishes the membrane permeability and results in high operational energy costs. The current study presents optimizing the operating parameters of a novel rotating biological contactor (RBC) integrated with an external membrane (RBC + ME) that combines membrane technology with an RBC. In the RBC + ME, the membrane panel is placed external to the bioreactor. Response surface methodology (RSM) is applied to optimize the membrane permeability through three operating parameters (hydraulic retention time (HRT), rotational disk speed, and sludge retention time (SRT)). The artificial neural networks (ANN) and support vector machine (SVM) are implemented to depict the statistical modelling approach using experimental data sets. The results showed that all three operating parameters contribute significantly to the performance of the bioreactor. RSM revealed an optimum value of 40.7 rpm disk rotational speed, 18 h HRT and 12.4 d SRT, respectively. An ANN model with ten hidden layers provides the highest R2 value, while the SVM model with the Bayesian optimizer provides the highest R2. RSM, ANN, and SVM models reveal the highest R-square values of 0.97, 0.99, and 0.99, respectively. Machine learning techniques help predict the model based on the experimental results and training data sets.
    Matched MeSH terms: Neural Networks (Computer)*
  14. Jiao X, Ren G, Law CL, Li L, Cao W, Luo Z, et al.
    Int J Biol Macromol, 2024 Sep;276(Pt 2):133921.
    PMID: 39025175 DOI: 10.1016/j.ijbiomac.2024.133921
    Although starch has been intensively studied as a raw material for 3D printing, the relationship between several important process parameters in the preparation of starch gels and the printing results is unclear. In this study, the relationship between different processing conditions and the gel printing performance of corn starch was evaluated by printing tests, rheological tests and low-field nuclear magnetic resonance (LF-NMR) tests, and a back-propagation artificial neural network (BP-ANN) model for predicting gel printing performance was developed. The results revealed that starch gels exhibited favorable printing performance when the gelatinization temperature ranged from 75 °C to 85 °C, and the starch content was maintained between 15 % and 20 %. The R2adj of the BP-ANN models were all reached 0.894, which indicated good predictive ability. The results of the study not only provide theoretical support for the application of corn starch gels in 3D food printing, but also present a novel approach for predicting the printing performance of related materials. This method contributes to the optimization of printing parameters, thereby enhancing printing efficiency and quality.
    Matched MeSH terms: Neural Networks (Computer)*
  15. Hoy ZX, Phuang ZX, Farooque AA, Fan YV, Woon KS
    Environ Pollut, 2024 Mar 01;344:123386.
    PMID: 38242306 DOI: 10.1016/j.envpol.2024.123386
    Improper municipal solid waste (MSW) management contributes to greenhouse gas emissions, necessitating emissions reduction strategies such as waste reduction, recycling, and composting to move towards a more sustainable, low-carbon future. Machine learning models are applied for MSW-related trend prediction to provide insights on future waste generation or carbon emissions trends and assist the formulation of effective low-carbon policies. Yet, the existing machine learning models are diverse and scattered. This inconsistency poses challenges for researchers in the MSW domain who seek to identify and optimize the machine learning techniques and configurations for their applications. This systematic review focuses on MSW-related trend prediction using the most frequently applied machine learning model, artificial neural network (ANN), while addressing potential methodological improvements for reducing prediction uncertainty. Thirty-two papers published from 2013 to 2023 are included in this review, all applying ANN for MSW-related trend prediction. Observing a decrease in the size of data samples used in studies from daily to annual timescales, the summarized statistics suggest that well-performing ANN models can still be developed with approximately 33 annual data samples. This indicates promising opportunities for modeling macroscale greenhouse gas emissions in future works. Existing literature commonly used the grid search (manual) technique for hyperparameter (e.g., learning rate, number of neurons) optimization and should explore more time-efficient automated optimization techniques. Since there are no one-size-fits-all performance indicators, it is crucial to report the model's predictive performance based on more than one performance indicator and examine its uncertainty. The predictive performance of newly-developed integrated models should also be benchmarked to show performance improvement clearly and promote similar applications in future works. The review analyzed the shortcomings, best practices, and prospects of ANNs for MSW-related trend predictions, supporting the realization of practical applications of ANNs to enhance waste management practices and reduce carbon emissions.
    Matched MeSH terms: Neural Networks (Computer)*
  16. Chen C, Mat Isa NA, Liu X
    Comput Biol Med, 2025 Feb;185:109507.
    PMID: 39631108 DOI: 10.1016/j.compbiomed.2024.109507
    This study systematically reviews CNN-based medical image classification methods. We surveyed 149 of the latest and most important papers published to date and conducted an in-depth analysis of the methods used therein. Based on the selected literature, we organized this review systematically. First, the development and evolution of CNN in the field of medical image classification are analyzed. Subsequently, we provide an in-depth overview of the main techniques of CNN applied to medical image classification, which is also the current research focus in this field, including data preprocessing, transfer learning, CNN architectures, and explainability, and their role in improving classification accuracy and efficiency. In addition, this overview summarizes the main public datasets for various diseases. Although CNN has great potential in medical image classification tasks and has achieved good results, clinical application is still difficult. Therefore, we conclude by discussing the main challenges faced by CNNs in medical image analysis and pointing out future research directions to address these challenges. This review will help researchers with their future studies and can promote the successful integration of deep learning into clinical practice and smart medical systems.
    Matched MeSH terms: Neural Networks (Computer)*
  17. Tin TC, Chiew KL, Phang SC, Sze SN, Tan PS
    Comput Intell Neurosci, 2019;2019:8729367.
    PMID: 30719036 DOI: 10.1155/2019/8729367
    Preventive maintenance activities require a tool to be offline for long hour in order to perform the prescribed maintenance activities. Although preventive maintenance is crucial to ensure operational reliability and efficiency of the tool, long hour of preventive maintenance activities increases the cycle time of the semiconductor fabrication foundry (Fab). Therefore, this activity is usually performed when the incoming Work-in-Progress to the equipment is forecasted to be low. The current statistical forecasting approach has low accuracy because it lacks the ability to capture the time-dependent behavior of the Work-in-Progress. In this paper, we present a forecasting model that utilizes machine learning method to forecast the incoming Work-In-Progress. Specifically, our proposed model uses LSTM to forecast multistep ahead incoming Work-in-Progress prediction to an equipment group. The proposed model's prediction results were compared with the results of the current statistical forecasting method of the Fab. The experimental results demonstrated that the proposed model performed better than the statistical forecasting method in both hit rate and Pearson's correlation coefficient, r.
    Matched MeSH terms: Neural Networks (Computer)*
  18. Deebani W, Aziz L, Aziz A, Basri WS, Alawad WM, Althubiti SA
    Sci Rep, 2025 Mar 03;15(1):7461.
    PMID: 40032913 DOI: 10.1038/s41598-025-90288-6
    Current breast cancer diagnosis methods often face limitations such as high cost, time consumption, and inter-observer variability. To address these challenges, this research proposes a novel deep learning framework that leverages generative adversarial networks (GANs) for data augmentation and transfer learning to enhance breast cancer classification using convolutional neural networks (CNNs). The framework uses a two-stage augmentation approach. First, a conditional Wasserstein GAN (cWGAN) generates synthetic breast cancer images based on clinical data, enhancing training stability and enabling targeted feature incorporation. Second, traditional augmentation techniques (e.g., rotation, flipping, cropping) are applied to both original and synthetic images. A multi-scale transfer learning technique is also employed, integrating three pre-trained CNNs (DenseNet-201, NasNetMobile, ResNet-101) with a multi-scale feature enrichment scheme, allowing the model to capture features at various scales. The framework was evaluated on the BreakHis dataset, achieving an accuracy of 99.2% for binary classification and 98.5% for multi-class classification, significantly outperforming existing methods. This framework offers a more efficient, cost-effective, and accurate approach for breast cancer diagnosis. Future work will focus on generalizing the framework to clinical datasets and integrating it into diagnostic workflows.
    Matched MeSH terms: Neural Networks (Computer)*
  19. Wang L, Zou W, Wang Y, Koh D, Munsif Bin Wan Pa WA, Gao R
    Sci Rep, 2025 Jan 09;15(1):1461.
    PMID: 39789314 DOI: 10.1038/s41598-025-85725-5
    To improve the scientific accuracy and precision of children's physical fitness evaluations, this study proposes a model that combines self-organizing maps (SOM) neural networks with cluster analysis. Existing evaluation methods often rely on traditional, single statistical analyses, which struggle to handle the complexity of high-dimensional, nonlinear data, resulting in a lack of precision and personalization. This study uses the SOM neural network to reduce the dimensionality of high-dimensional health data. Moreover, it integrates cluster analysis to categorize and analyze key physical fitness attributes, such as strength, flexibility, and endurance. Experimental results show that the proposed optimized model outperforms comparison models such as T-distributed stochastic neighbor embedding, density peak clustering, and deep embedded clustering in terms of performance. The accuracy for the strength dimension reaches 0.934, the F1 score is 0.862, and the area under the curve of receiver operating characteristic is 0.944. The silhouette coefficients for cluster analysis in strength, flexibility, and endurance dimensions are 0.655, 0.559, and 0.601, respectively, demonstrating good intra-class and inter-class distances. The proposed model enhances the comprehensive analysis of children's physical fitness and provides a scientific basis for personalized health interventions, making an important contribution to research in this field.
    Matched MeSH terms: Neural Networks (Computer)*
  20. Ismail A, Idris MYI, Ayub MN, Por LY
    Sensors (Basel), 2018 Dec 10;18(12).
    PMID: 30544660 DOI: 10.3390/s18124353
    Smart manufacturing enables an efficient manufacturing process by optimizing production and product transaction. The optimization is performed through data analytics that requires reliable and informative data as input. Therefore, in this paper, an accurate data capture approach based on a vision sensor is proposed. Three image recognition methods are studied to determine the best vision-based classification technique, namely Bag of Words (BOW), Spatial Pyramid Matching (SPM) and Convolutional Neural Network (CNN). The vision-based classifiers categorize the apple as defective and non-defective that can be used for automatic inspection, sorting and further analytics. A total of 550 apple images are collected to test the classifiers. The images consist of 275 non-defective and 275 defective apples. The defective category includes various types of defect and severity. The vision-based classifiers are trained and evaluated according to the K-fold cross-validation. The performances of the classifiers from 2-fold, 3-fold, 4-fold, 5-fold and 10-fold are compared. From the evaluation, SPM with SVM classifier attained 98.15% classification accuracy for 10-fold and outperformed the others. In terms of computational time, CNN with SVM classifier is the fastest. However, minimal time difference is observed between the computational time of CNN and SPM, which were separated by only 0.05 s.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links