Methods: An observational study was conducted among 3935 patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014.
Results: The VP4/VP2 gene was genotyped from all 976 RV-positive specimens, where the predominance of RV-A (49%) was observed, followed by RV-C (38%) and RV-B (13%). A significant regression in median nasopharyngeal viral load (VL) (P < .001) was observed, from 883 viral copies/µL at 1-2 days after symptom onset to 312 viral copies/µL at 3-4 days and 158 viral copies/µL at 5-7 days, before declining to 35 viral copies/µL at ≥8 days. In comparison with RV-A (median VL, 217 copies/µL) and RV-B (median VL, 275 copies/µL), RV-C-infected subjects produced higher VL (505 copies/µL; P < .001). Importantly, higher RV VL (median, 348 copies/µL) was associated with more severe respiratory symptoms (Total Symptom Severity Score ≥17, P = .017). A total of 83 phylogenetic-based transmission clusters were identified in the population. It was observed that the relative humidity was the strongest environmental predictor of RV seasonality in the tropical climate.
Conclusions: Our findings underline the role of VL in increasing disease severity attributed to RV-C infection, and unravel the factors that fuel the population transmission dynamics of RV.
METHODS: Prospective case finding was performed from June to December 2009. Those who presented with signs and symptoms of CHIKV infection were investigated. We designed a case control study to assess the risk factors. Assessment consisted of answering questions, undergoing a medical examination, and being tested for the presence of IgM antibodies to CHIKV. Descriptive epidemiological studies were conducted by reviewing both the national surveillance and laboratory data. Multivariable logistic regression analysis was performed to determine risk factors contributing to the illness. Cases were determined by positive to RT-PCR or serological for antibodies by IgM. CHIKV specificity was confirmed by DNA sequencing.
RESULTS: There were 129 suspected cases and 176 controls. Among suspected cases, 54.4% were diagnosed to have CHIKV infection. Among the controls, 30.1% were found to be positive to serology for antibodies [IgM, 14.2% and IgG, 15.9%]. For analytic study and based on laboratory case definition, 95 were considered as cases and 123 as controls. Those who were positive to IgG were excluded. CHIKV infection affected all ages and mostly between 50-59 years old. Staying together in the same house with infected patients and working as rubber tappers were at a higher risk of infection. The usage of Mosquito coil insecticide had shown to be a significant protective factor. Most cases were treated as outpatient, only 7.5% needed hospitalization. The CHIKV infection was attributable to central/east African genotype CHIKV.
CONCLUSIONS: In this study, cross border activity was not a significant risk factor although Thailand and Malaysia shared the same CHIKV genotype during the episode of infections.
METHODS: This was a cross-sectional prospective study conducted from September 2007 to September 2013. Consecutive patients who were detected to have anti-HCV antibodies in the University of Malaya Medical Centre were included and tested for the presence of HCV RNA using Roche Cobas Amplicor Analyzer and HCV genotype using Roche single Linear Array HCV Genotyping strip.
RESULTS: Five hundred and ninety-six subjects were found to have positive anti-HCV antibodies during this period of time. However, only 396 (66.4%) were HCV RNA positive and included in the final analysis. Our results showed that HCV genotype 3 was the predominant genotype with overall frequency of 61.9% followed by genotypes 1 (35.9%), 2 (1.8%) and 6 (0.5%). There was a slightly higher prevalence of HCV genotype 3 among the Malays when compared to the Chinese (P=0.043). No other statistical significant differences were observed in the distribution of HCV genotypes among the major ethnic groups. There was also no association between the predominant genotypes and basic demographic variables.
CONCLUSIONS: In a multi-ethnic Asian society in Malaysia, genotype 3 is the predominant genotype among all the major ethnic groups with genotype 1 as the second commonest genotype. Both genotypes 2 and 6 are uncommon. Neither genotype 4 nor 5 was detected. There is no identification of HCV genotype according to ethnic origin, age and gender.