Displaying publications 101 - 120 of 623 in total

Abstract:
Sort:
  1. Goh, K.L., Nazri, M.Y., Ong, C.L.
    MyJurnal
    Vancomycin bead is an important ancillary treatment for osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA). However, red-man syndrome, which can be a life-threatening complication of vancomycin, may occur from the use of vancomycin beads albeit rarely. We report our first case of red-man syndrome caused by vancomycin bead's insertion for chronic osteomyelitis. Symptomatic treatment was not
    effective and removal of the vancomycin beads seems to be the best treatment for this condition.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus
  2. Tan XE, Neoh HM, Looi ML, Chin SF, Cui L, Hiramatsu K, et al.
    Can J Microbiol, 2017 Mar;63(3):260-264.
    PMID: 28059579 DOI: 10.1139/cjm-2016-0439
    Comparative proteomic profiling between 2 vancomycin-intermediate Staphylococcus aureus (VISA) strains, Mu50Ω-vraSm and Mu50Ω-vraSm-graRm, and vancomycin-susceptible S. aureus (VSSA) strain Mu50Ω revealed upregulated levels of catabolic ornithine carbamoyltransferase (ArcB) of the arginine catabolism pathway in VISA strains. Subsequent analyses showed that the VISA strains have higher levels of cellular ATP and ammonia, which are by-products of arginine catabolism, and displayed thicker cell walls. We postulate that elevated cytoplasmic ammonia and ATP molecules, resulting from activated arginine catabolism upon acquisition of vraS and graR mutations, are important requirements facilitating cell wall biosynthesis, thereby contributing to thickened cell wall and consequently reduced vancomycin susceptibility in VISA strains.
    Matched MeSH terms: Staphylococcus aureus/drug effects*; Staphylococcus aureus/enzymology; Staphylococcus aureus/genetics
  3. Puah SM, Tan JAMA, Chew CH, Chua KH
    J Food Sci, 2018 Sep;83(9):2337-2342.
    PMID: 30101982 DOI: 10.1111/1750-3841.14300
    Staphylococcus aureus is able to form multilayer biofilms embedded within a glycocalyx or slime layer. Biofilm formation poses food contamination risks and can subsequently increase the risk of food poisoning. Identification of food-related S. aureus strains will provide additional data on staphylococcal food poisoning involved in biofilm formation. A total of 52 S. aureus strains isolated from sushi and sashimi was investigated to study their ability for biofilm formation using crystal violet staining. The presence of accessory gene regulator (agr) groups and 15 adhesion genes was screened and their associations in biofilm formation were studied. All 52 S. aureus strains showed biofilm production on the tested hydrophobic surface with 44% (23/52) strains classified as strong, 33% (17/52) as moderate, and 23% (12/52) as weak biofilm producers. The frequency of agr-positive strains was 71% (agr group 1 = 21 strains; agr group 2 = 2 strains; agr group 3 = 12 strains; agr group 4 = 2 strains) whereas agr-negative strains were 29% (15/52). Twelve adhesion genes were detected and 98% of the S. aureus strains carried at least one adhesion gene. The ebps was significantly (p < .05) associated with strong biofilm producing strains. In addition, eno, clfA, icaAD, sasG, fnbB, cna, and sasC were significantly higher in the agr-positive group compared to the agr-negative group. The results of this study suggest that the presence of ebps, eno, clfA, icaAD, sasG, fnbB, cna, and sasC may play an important role in enhancing the stage of biofilm-related infections and warrants further investigation.

    PRACTICAL APPLICATION: This work contributes to the knowledge on the biofilm formation and the distribution of agr groups in S. aureus strains as well as microbial surface components in recognizing adherence matrix molecules of organisms isolated from ready-to-eat sushi and sashimi. The findings provide valuable information to further study the roles of specific genes in causing biofilm-related infections.

    Matched MeSH terms: Staphylococcus aureus/genetics*; Staphylococcus aureus/isolation & purification; Staphylococcus aureus/pathogenicity
  4. Ahmad P, Khandaker MU, Khan A, Rehman F, Din SU, Ali H, et al.
    Biomed Res Int, 2022;2022:3605054.
    PMID: 36420094 DOI: 10.1155/2022/3605054
    A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.
    Matched MeSH terms: Staphylococcus aureus
  5. Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AA
    PeerJ, 2022;10:e12648.
    PMID: 35251775 DOI: 10.7717/peerj.12648
    BACKGROUND: Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA.

    METHOD: Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88.

    RESULTS: Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88.

    CONCLUSION: Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.

    Matched MeSH terms: Staphylococcus aureus
  6. Mohd-Ilham I, Muhd-Syafi AB, Khairy-Shamel ST, Shatriah I
    Singapore Med J, 2020 Jun;61(6):312-319.
    PMID: 31598730 DOI: 10.11622/smedj.2019121
    INTRODUCTION: Limited data is available on paediatric orbital cellulitis in Asia. We aimed to describe demographic data, clinical presentation, predisposing factors, identified microorganisms, choice of antibiotics and management in children with orbital cellulitis treated in a tertiary care centre in Malaysia.

    METHODS: A retrospective review was performed on children with orbital cellulitis aged below 18 years who were admitted to Hospital Universiti Sains Malaysia, Kelantan, Malaysia, between January 2013 and December 2017.

    RESULTS: A total of 14 paediatric patients fulfilling the diagnostic criteria for orbital cellulitis were included. Their mean age was 6.5 ± 1.2 years. Boys were more likely to have orbital cellulitis than girls (71.4% vs. 28.6%). Involvement of both eyes was observed in 14.3% of the patients. Sinusitis (28.6%) and upper respiratory tract infection (21.4%) were the most common predisposing causes. Staphylococcus aureus (28.6%) was the leading pathogen. Longer duration of hospitalisation was observed in those infected with methicillin-resistant Staphylococcus aureus and Burkholderia pseudomallei. 10 (71.4%) patients were treated with a combination of two or three antibiotics. In this series, 42.9% had surgical interventions.

    CONCLUSION: Young boys were found to be more commonly affected by orbital cellulitis than young girls. Staphylococcus aureus was the most common isolated microorganism. Methicillin-resistant Staphylococcus aureus and Burkholderia pseudomallei caused severe infection. Sinusitis and upper respiratory tract infection were the most common predisposing factors. A majority of the children improved with medical treatment alone. Our findings are in slight disagreement with other published reports on paediatric orbital cellulitis, especially from the Asian region.

    Matched MeSH terms: Staphylococcus aureus/isolation & purification; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  7. Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP
    J Biomed Biotechnol, 2012;2012:417247.
    PMID: 22529705 DOI: 10.1155/2012/417247
    The ability to adhere and produce biofilms is characteristic of enhanced virulence among isolates of methicillin-resistant Staphylococcus aureus (MRSA). The aim of the study is to find out whether these characteristics are consistently similar among isolates variations of MRSA. The study used 30 various isolates of MRSA belong to 13 spa types and 5 MLST types and determined the aggregation, the adherence, and the production of biofilms and slime for each isolate. The methods used to evaluate these characteristics were a modified Congo red agar assay (MCRA), a microtiter plate assay (MPA), high-magnification light microscopy, scanning electron microscopy (SEM), and PCR. The study found that isolates belonging to similar Spa, SCCmec, and ST types have similar abilities to produce biofilms; however, their ability to produce slime on CRA was found to be different. Moreover, isolates that have different Spa types showed high variation in their ability to produce biofilms. The results of light microscope revealed the isolates that produced strong and weak biofilms and formed similar aggregation on the glass surfaces. SEM results showed that all 30 MRSA isolates that were tested were 100% positive for biofilm formation, although to varying degrees. Further testing using PCR confirmed that 100% of the 30 isolates tested were positive for the presence of the icaADBC, fnbA, eno, ebps, clfA, and clfB genes. The prevalence of fib, cna, fnbB, and bbp in MRSA clones was 90, 93.33, 53.33, and 10%, respectively. This study indicate that differences in biofilm production capacities are caused by the differences in surface protein A (Spa) type and are not due to differences in MLST and SCCmec types.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/physiology*
  8. Lim KT, Hanifah YA, Yusof M, Thong KL
    Indian J Med Microbiol, 2012 Apr-Jun;30(2):203-7.
    PMID: 22664438 DOI: 10.4103/0255-0857.96693
    The objective of this study was to determine the expression and transferability of tetracycline and erythromycin resistance among 188 MRSA strains from a Malaysian tertiary hospital. The minimum inhibitory concentrations (MICs) for oxacillin, erythromycin, tetracycline and ciprofloxacin ranged from 4 to 512 μg/ml, 0.25 to 256 μg/ml, 0.5 to 256 μg/ml and 0.5 to 512 μg/ml, respectively. Tetracycline-resistant strains showed co-resistance towards ciprofloxacin and erythromycin. There was a significant increase (P<0.05) of high-level tetracycline (≥MIC 256 μg/ml) and erythromycin (≥MIC 128 μg/ml) resistant strains in between the years 2003 and 2008. All erythromycin-resistant strains harboured ermA or ermC gene and all tetracycline-resistant strains harboured tetM or tetK gene. The blaZ was detected in all MRSA strains, whereas ermA, tetM, ermC, tetK and msrA genes were detected in 157 (84%), 92 (49%), 40 (21%), 39 (21%) and 4 (2%) MRSA strains, respectively. The blaZ, tetM, ermC and tetK genes were plasmid-encoded, with ermC gene being easily transmissible. Tn5801-like transposon was present in 78 tetM-positive strains. ermA and tetM genes were the most prevalent erythromycin and tetracycline resistance determinants, respectively, in MRSA strains. The association of resistance genes with mobile genetic elements possibly enhances the spread of resistant traits in MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  9. Aruldass CA, Marimuthu MM, Ramanathan S, Mansor SM, Murugaiyah V
    Microsc Microanal, 2013 Feb;19(1):254-60.
    PMID: 23332129 DOI: 10.1017/S1431927612013785
    Mesua ferrea is traditionally used for treating bleeding piles, fever, and renal diseases. It has been reported to have antimircobial activity. In the present study, antibacterial efficacy of leaf and fruit extracts on the growth and morphology of Staphylococcus aureus is evaluated. Both extracts display good antibacterial activity against S. aureus with a minimum inhibition concentration of 0.048 mg/mL. Both extracts are bacteriostatic at a minimum bacteriostatic concentration of 0.39 mg/mL. The bacteriostatic activity lasts for 24 h, and then cells start to grow as normal as shown in time-kill analysis. Scanning electron microscopy study indicated potential detrimental effect of the extracts of leaf and fruits of M. ferrea on the morphology of S. aureus. The treatment with the extracts caused extensive lysis of the cells, leakage of intracellular constituents, and aggregation of cytoplasmic contents forming an open meshwork of the matrix.
    Matched MeSH terms: Staphylococcus aureus/cytology; Staphylococcus aureus/drug effects*; Staphylococcus aureus/growth & development
  10. Aklilu E, Zakaria Z, Hassan L, Hui Cheng C
    PLoS One, 2012;7(8):e43329.
    PMID: 22937034 DOI: 10.1371/journal.pone.0043329
    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a problem in veterinary medicine and is no longer considered as a mere nosocomial pathogen. We studied the occurrence of MRSA in veterinary personnel, cats and dogs and the environmental premises in University Veterinary Hospital (UVH). We found the prevalence of MRSA as follows: UVH 2/28 (7.1%) staff, 8/100 (8%) of the pets [5/50 (10%) of the dogs and 3/50 (6%) of the cats)], and 9/28 (4.5%) of the environmental samples. Antibiotic sensitivity tests (AST) show multi-resistance characteristics of the MRSA and the minimum inhibitory concentration (MIC) values for the isolates ranged from 1.5 µg to >256 µg/ml. Molecular typing by using multi-locus sequence typing (MLST), staphylococcal protein A typing (spa typing) and pulsed-field gel electrophoresis (PFGE) was conducted and the results from MLST indicated that an isolate from a veterinary personnel (PG21), typed as ST1241 belonged to the same clonal complex (CC) as the two isolates from two dogs (DG16 and DG20), both being typed as ST59. The PFGE results revealed that the two isolates from two veterinary personnel, PG21 and PG16 belonged to closely related MRSA strains with isolates from dog (DG36) and from environmental surface (EV100) respectively. The fact that PFGE revealed close similarity between isolates from humans, a dog and environmental surfaces indicates the possibility for either of them to be the source of MRSA and the potential routes and risks of spread.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/genetics*
  11. Sasidharan S, Prema B, Yoga LL
    Asian Pac J Trop Biomed, 2011 Apr;1(2):130-2.
    PMID: 23569742 DOI: 10.1016/S2221-1691(11)60010-5
    To evaluate the prevalence of multidrug resistant Staphylococcus aureus (S. aureus) in dairy products.
    Matched MeSH terms: Staphylococcus aureus/drug effects*; Staphylococcus aureus/isolation & purification
  12. Norazah A, Salbiah N, Nurizzat M, Santhana R
    Med J Malaysia, 2009 Jun;64(2):166-7.
    PMID: 20058580 MyJurnal
    A 64-year old patient, who had bacteraemia, did not respond to vancomycin despite the MRSA isolate being sensitive to the antibiotic at MIC 2 microg/mL. Electron microscopy of the MRSA isolate showed thickening of the cell wall, which was not observed in MRSA with lower vancomycin MIC.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/ultrastructure
  13. Tan HS, Ngeow YF, Jamal F
    Med J Malaysia, 1986 Mar;41(1):24-9.
    PMID: 3796343
    55% of a sample of patients in a rural
    community, and 76% of a sample of patients and
    staff in the local district hospital were found to
    be nasal carriers for Staphylococcus aureus. The
    in vitro antibiotic susceptibility patterns of 46
    strains of S. aureus isolated in nasal carriers as
    well as of 43 strains in community-acquired skin
    infections were characterised. High levels of
    resistance were expressed to penicillin (73%),
    cephalexin (64%) and tetracycline (46%).
    Resistance to erythromycin (18%) was moderate.
    A few strains showed resistance to methicillin
    (5 isolates), vancomycin (4), [usidic acid (3),
    cotrimoxazole (1), and none to gentamicin.
    Penicillin can no longer be recommended for
    treating community-acquired S. aureus infections.
    Matched MeSH terms: Staphylococcus aureus/drug effects*; Staphylococcus aureus/isolation & purification
  14. Al-Talib H, Yean CY, Al-Khateeb A, Hassan H, Singh KK, Al-Jashamy K, et al.
    BMC Microbiol, 2009;9:113.
    PMID: 19476638 DOI: 10.1186/1471-2180-9-113
    Staphylococcus aureus is a major human pathogen, especially methicillin-resistant S. aureus (MRSA), which causes a wide range of hospital and community-acquired infections worldwide. Conventional testing for detection of MRSA takes 2-5 days to yield complete information of the organism and its antibiotic sensitivity pattern.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  15. Rohani MY, Raudzah A, Lau MG, Zaidatul AA, Salbiah MN, Keah KC, et al.
    Int J Antimicrob Agents, 2000 Jan;13(3):209-13.
    PMID: 10724026
    Isolates of 390 Staphylococcus aureus were tested against 13 different antibiotics by a disc diffusion method as recommended by the National Committee for Clinical Laboratory Standards (NCCLS). Strains were isolated from blood (5.7%), cerebrospinal fluid (0.5%), respiratory tract (11.8%), pus and wound (73.3%), urine (1.8%), genital specimens (1.0%) and other specimens (4.3%). Only 4.6% of the isolates were fully susceptible to all the drugs tested. Resistance to penicillin was 94.1%, methicillin, 39.7%, chloramphenicol, 8.5%, ciprofloxacin, 29.2%, clindamycin, 2.1%, erythromycin, 45.9% gentamicin, 40.5%; rifampicin, 3.3% tetracycline, 47.2%, co-trimoxazole, 38.5%, mupirocin, 2.8%, fusidic acid, 3.6%. None of the isolates was resistant to vancomycin. The susceptibility of methicillin-resistant strains to erythromycin, gentamicin, tetracycline and ciprofloxacin was low, while clindamycin, fusidic acid, mupirocin, and rifampicin remained active.
    Matched MeSH terms: Staphylococcus aureus/drug effects*; Staphylococcus aureus/isolation & purification
  16. Lim VK
    J Hosp Infect, 1988 Feb;11 Suppl A:103-8.
    PMID: 2896692
    Staphylococcal infection is common in Malaysian hospitals. A recent survey of 22 Malaysian hospitals revealed that staphylococci were isolated from almost 40% of positive blood cultures. A more detailed analysis of such cases in our own hospital showed that almost 70% of Staphylococcus aureus and about 16% of coagulase-negative staphylococcal isolates were associated with clinically-significant disease. Staphylococcal bacteraemia was seen mainly in neonatal sepsis, skin and soft tissue infections, pneumonia, arthritis, osteomyelitis, endocarditis and postoperative sepsis. Multiply-resistant S. aureus were encountered in all the hospitals surveyed. Resistance rates to penicillin ranged from 40% to almost 100% while methicillin resistance rates of up to 25% were reported from several hospitals.
    Matched MeSH terms: Staphylococcus aureus/drug effects; Staphylococcus aureus/isolation & purification
  17. Manimaran M, Teo YY, Kah JCY, Beishenaliev A, Loke YL, Foo YY, et al.
    Int J Nanomedicine, 2024;19:3697-3714.
    PMID: 38681091 DOI: 10.2147/IJN.S452085
    INTRODUCTION: Over 75% of clinical microbiological infections are caused by bacterial biofilms that grow on wounds or implantable medical devices. This work describes the development of a new poly(diallyldimethylammonium chloride) (PDADMAC)/alginate-coated gold nanorod (GNR/Alg/PDADMAC) that effectively disintegrates the biofilms of Staphylococcus aureus (S. aureus), a prominent pathogen responsible for hospital-acquired infections.

    METHODS: GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied.

    RESULTS: The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy.

    CONCLUSION: These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.

    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/physiology
  18. Lee CJ, Lai LL, See MH, Velayuthan RD, Doon YK, Lim PE, et al.
    World J Surg, 2023 Nov;47(11):2743-2752.
    PMID: 37491402 DOI: 10.1007/s00268-023-07108-z
    BACKGROUND: In recent years, the increase in antibiotics usage locally has led to a worrying emergence of multi-drug resistant organisms (MDRO), with the Malaysian prevalence rate of methicillin-resistant Staphylococcus aureus (MRSA) ranging from 17.2 to 28.1% between 1999 and 2017. A study has shown that 7% of all non-lactational breast abscesses are caused by MRSA. Although aspiration offers less morbidities compared to surgical drainage, about 20% of women infected by MRSA who initially underwent aspiration subsequently require surgical drainage. This study is conducted to determine the link between aetiology, antimicrobial resistance pattern and treatment modalities of breast abscesses.

    METHODS: Retrospective study of reviewing microbiology specimens of breast abscess patients treated at Universiti Malaya Medical Centre from 2015 to 2020. Data collected from microbiology database and electronic medical records were analysed using SPSS V21.

    RESULT: A total of 210 specimens from 153 patients were analysed. One-fifth (19.5%) of the specimens isolated were MDRO. Lactational associated infections had the largest proportion of MDR in comparison to non-lactational and secondary infections (38.5%, 21.7%, 25.7%, respectively; p = 0.23). Staphylococcus epidermidis recorded the highest number of MDR (n = 12) followed by S. aureus (n = 8). Adjusted by aetiological groups, the presence of MDRO is linked to failure of single aspirations (p = 0.554) and significantly doubled the risk of undergoing surgical drainage for resolution (p = 0.041).

    CONCLUSION: MDR in breast abscess should be recognised as an increasing healthcare burden due to a paradigm shift of MDRO and a rise of resistance cases among lactational associated infection that were vulnerable to undergo surgical incision and drainage for resolution.

    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  19. Chuprom J, Kidsin K, Sangkanu S, Nissapatorn V, Wiart C, de Lourdes Pereira M, et al.
    Vet Res Commun, 2023 Jun;47(2):523-538.
    PMID: 36260188 DOI: 10.1007/s11259-022-09999-0
    This study aimed to assess antibacterial activity of Knema retusa wood extract (KRe) against antibiotic resistant staphylococci which are causative agents of bovine mastitis. From 75 cases of intramammary infections in dairy cows, 66 staphylococcal isolates were collected, including 11 Staphylococcus aureus isolates (17%) and 55 coagulase-negative staphylococci (83%). Sixty isolates (91%) formed strong biofilms. KRe had minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) against the isolates ranging 32-256 ug/mL and 64-512 ug/mL, respectively. Two-hour KRe exposures at 4×MIC, viabilities of S. aureus and S. haemolyticus decreased by 3 log10 compared to the control. Scanning EM (SEM) showed that KRe disrupted the bacterial cells of both species. KRe at 1/16×MIC significantly inhibited biofilm formation (P 
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  20. Yap CH, Ramle AQ, Lim SK, Rames A, Tay ST, Chin SP, et al.
    Bioorg Med Chem, 2023 Nov 15;95:117485.
    PMID: 37812886 DOI: 10.1016/j.bmc.2023.117485
    Staphylococcus aureus is a highly adaptable opportunistic pathogen that can form biofilms and generate persister cells, leading to life-threatening infections that are difficult to treat with antibiotics alone. Therefore, there is a need for an effective S. aureus biofilm inhibitor to combat this public health threat. In this study, a small library of indolenine-substituted pyrazoles and pyrimido[1,2-b]indazole derivatives were synthesised, of which the hit compound exhibited promising antibiofilm activities against methicillin-susceptible S. aureus (MSSA ATCC 29213) and methicillin-resistant S. aureus (MRSA ATCC 33591) at concentrations significantly lower than the planktonic growth inhibition. The hit compound could prevent biofilm formation and eradicate mature biofilms of MSSA and MRSA, with a minimum biofilm inhibitory concentration (MBIC50) value as low as 1.56 µg/mL and a minimum biofilm eradication concentration (MBEC50) value as low as 6.25 µg/mL. The minimum inhibitory concentration (MIC) values of the hit compound against MSSA and MRSA were 50 µg/mL and 25 µg/mL, respectively, while the minimum bactericidal concentration (MBC) values against MSSA and MRSA were > 100 µg/mL. Preliminary structure-activity relationship analysis reveals that the fused benzene ring and COOH group of the hit compound are crucial for the antibiofilm activity. Additionally, the compound was not cytotoxic to human alveolar A549 cells, thus highlighting its potential as a suitable candidate for further development as a S. aureus biofilm inhibitor.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links