Displaying publications 101 - 120 of 215 in total

Abstract:
Sort:
  1. Noruzman AH, Muhammad B, Ismail M, Abdul-Majid Z
    J Environ Manage, 2012 Nov 15;110:27-32.
    PMID: 22705857 DOI: 10.1016/j.jenvman.2012.05.019
    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  2. Akinbile CO, Yusoff MS, Ahmad Zuki AZ
    Waste Manag, 2012 Jul;32(7):1387-93.
    PMID: 22456086 DOI: 10.1016/j.wasman.2012.03.002
    Performance evaluation of pilot scale sub-surface constructed wetlands was carried out in treating leachate from Pulau Burung Sanitary Landfill (PBSL). The constructed wetland was planted with Cyperus haspan with sand and gravel used as substrate media. The experiment was operated for three weeks retention time and during the experimentation, the influent and effluent samples were tested for its pH, turbidity, color, total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), ammonia nitrogen (NH(3)-N), Total phosphorus (TP), total nitrogen (TN) and also for heavy metals such as iron (Fe), magnesium (Mg), manganese (Mn) and zinc (Zn) concentrations. The results showed that the constructed wetlands with C. haspan were capable of removing 7.2-12.4% of pH, 39.3-86.6% of turbidity, 63.5-86.6% of color, 59.7-98.8% of TSS, 39.2-91.8% of COD, 60.8-78.7% of BOD(5), 29.8-53.8% of NH(3)-N, 59.8-99.7% of TP, 33.8-67.0% of TN, 34.9-59.0% of Fe, 29.0-75.0% of Mg, 51.2-70.5% of Mn, and 75.9-89.4% of Zn. The significance of removal was manifested in the quality of the effluent obtained at the end of the study. High removal efficiencies in the study proved that leachate could be treated effectively using subsurface constructed wetlands with C. haspan plant.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  3. Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al.
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1464-84.
    PMID: 22207239 DOI: 10.1007/s11356-011-0709-8
    BACKGROUND: In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

    REVIEW: This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

    CONCLUSION: Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.

    Matched MeSH terms: Waste Disposal, Fluid/methods*
  4. Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2012 Jun;19(5):1612-9.
    PMID: 22134862 DOI: 10.1007/s11356-011-0676-0
    INTRODUCTION: Environmental safe and friendly management and disposal of wastewater sludge is a problem of every treatment plant throughout the world. Bioseparation and dewaterability of raw domestic wastewater sludge were evaluated for proper management and disposal by mycoremediation, i.e., using prior grown 2% (v/v) spore suspension of filamentous fungal (Mucor hiemalis Wehmer) broth inoculation, which were grown in 2% (w/v) solution of malt extract and wheat flour for 48-60 h in orbital shaker.

    DISCUSSION: Within 2-3 days of treatment application, encouraging results were achieved in total dry solids (TDS), total suspended solid (TSS), turbidity, chemical oxygen demand (COD), specific resistance to filtration (SRF), and pH due to fungal treatment in recognition of bioseparation and dewaterability of wastewater sludge compared to control. The significant reduction of TDS was remarked at fungal biomass (FB) in wheat flour (WF) treatment. The removal of TSS, turbidity, COD, and SRF were observed 96.0%, 99.4%, 92.6%, and 97.6%, respectively, in supernatant at 5 days by FB in WF. The SRF measuring the dewaterability was decreased with maximum (0.26 × 10(-12) mg/kg) equivalent to 95.5% at 2 days in FB in WF also. FB in WF broth is a potential, environmental friendly, comparatively low-cost biological technique which might play the significant role for bioremediation and bioseparation of domestic wastewater sludge. The present technique may bring a dynamic change in treatment of wastewater in future.

    Matched MeSH terms: Waste Disposal, Fluid/methods*
  5. Abdullah EA, Abdullah AH, Zainal Z, Hussein MZ, Ban TK
    J Environ Sci (China), 2012;24(10):1876-84.
    PMID: 23520859
    A modified hydrophilic penta-bismuth hepta-oxide nitrate (Bi5O7NO3) surface was synthesized via a precipitation method using TiO2 and Ag as modified agents. The synthesized product was characterized by different analytical techniques. The removal efficiency was evaluated using mono- and di-sulphonated azo dyes as model pollutants. Different kinetic, isotherm and diffusion models were chosen to describe the adsorption process. X-ray photoelectron spectroscopy (XPS) results revealed no noticeable differences in the chemical states of modified adsorbent when compared to pure Bi5O7NO3; however, the presence of hydrophilic centres such as TiO2 and Ag developed positively charged surface groups and improved its adsorption performance to a wide range of azo dyes. Dyes removal was found to be a function of adsorbent dosage, initial dye concentration, solution pH and temperature. The reduction of Langmuir 1,2-mixed order kinetics to the second or first-order kinetics could be successfully used to describe the adsorption of dyes onto the modified adsorbent. Mass transfer can be described by intra-particle diffusion at a certain stage, but it was not the rate limiting step that controlled the adsorption process. Homogenous behavior of adsorbent surface can be explored by applying Langmuir isotherm to fit the adsorption data.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  6. Ho LN, Ong SA, Osman H, Chong FM
    J Environ Sci (China), 2012;24(6):1142-8.
    PMID: 23505883
    Fish scale (FS) loaded TiO2 composites were investigated as photocatalysts in degradation of Methyl Orange under solar light irradiation. Composites were prepared through sol-gel method by varying mass ratio of TiO2/FS at 90:10, 70:30 and 50:50, respectively. The catalysts prepared in this study were characterized by using XRD, SEM, FT-IR and nitrogen sorption. The effects of solar irradiation, mass ratio of TiO2/FS composites, irradiation time and catalyst loadings were studied. Synergistic effect was found in TiO2/FS of 90:10 composite which performed higher photocatalytic degradation than synthesized TiO2 under solar light irradiation. However, further increasing fish scale content in the composites reduced the photocatalytic activity drastically. Under solar light irradiation, all the catalysts in this study exhibited photocatalytic activity, except TiO2/FS of 50:50 composite that only acted as a weak biosorbent without performing any photocatalytic property. Photocatalytic degradation increased with increasing catalyst loading and irradiation time but decreased with increased of initial dye concentration.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  7. Zainuddin Z, Wan Daud WR, Pauline O, Shafie A
    Bioresour Technol, 2011 Dec;102(23):10978-86.
    PMID: 21996481 DOI: 10.1016/j.biortech.2011.09.080
    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  8. Tay KS, Rahman NA, Abas MR
    Water Environ Res, 2011 Aug;83(8):684-91.
    PMID: 21905405
    This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH).
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  9. Wong CL, Tan YN, Mohamed AR
    J Environ Manage, 2011 Jul;92(7):1669-80.
    PMID: 21450395 DOI: 10.1016/j.jenvman.2011.03.006
    Titania nanotubes are gaining prominence in photocatalysis, owing to their excellent physical and chemical properties such as high surface area, excellent photocatalytic activity, and widespread availability. They are easily produced by a simple and effective hydrothermal method under mild temperature and pressure conditions. This paper reviews and analyzes the mechanism of titania nanotube formation by hydrothermal treatment. It further examines the parameters that affect the formation of titania nanotubes, such as starting material, sonication pretreatment, hydrothermal temperature, washing process, and calcination process. Finally, the effects of the presence of dopants on the formation of titania nanotubes are analyzed.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  10. Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R
    PMID: 21929380 DOI: 10.1080/10590501.2011.601847
    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  11. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  12. Abdullah N, Ujang Z, Yahya A
    Bioresour Technol, 2011 Jun;102(12):6778-81.
    PMID: 21524907 DOI: 10.1016/j.biortech.2011.04.009
    The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m(-3) d(-1). The biomass concentration was 7600 mg L(-1) while the sludge volume index (SVI) was 31.3 mL g SS(-1) indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  13. Jusoh A, Hartini WJ, Ali N, Endut A
    Bioresour Technol, 2011 May;102(9):5312-8.
    PMID: 21232934 DOI: 10.1016/j.biortech.2010.12.074
    In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Mohajeri S, Aziz HA, Zahed MA, Mohajeri L, Bashir MJ, Aziz SQ, et al.
    Water Sci Technol, 2011;64(8):1652-60.
    PMID: 22335108
    Landfill leachate is one of the most recalcitrant wastes for biotreatment and can be considered a potential source of contamination to surface and groundwater ecosystems. In the present study, Fenton oxidation was employed for degradation of stabilized landfill leachate. Response surface methodology was applied to analyze, model and optimize the process parameters, i.e. pH and reaction time as well as the initial concentrations of hydrogen peroxide and ferrous ion. Analysis of variance showed that good coefficients of determination were obtained (R2 > 0.99), thus ensuring satisfactory agreement of the second-order regression model with the experimental data. The results indicated that, pH and its quadratic effects were the main factors influencing Fenton oxidation. Furthermore, antagonistic effects between pH and other variables were observed. The optimum H2O2 concentration, Fe(II) concentration, pH and reaction time were 0.033 mol/L, 0.011 mol/L, 3 and 145 min, respectively, with 58.3% COD, 79.0% color and 82.1% iron removals.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  15. Al-Amri A, Salim MR, Aris A
    Water Sci Technol, 2011;64(7):1398-405.
    PMID: 22179635 DOI: 10.2166/wst.2011.421
    A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m(-2) h(-1) (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH(3)-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH(3)-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7-8.3.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  16. Damayanti A, Ujang Z, Salim MR, Olsson G
    Water Sci Technol, 2011;63(8):1701-6.
    PMID: 21866771
    Biofouling is a crucial factor in membrane bioreactor (MBR) applications, particularly for high organic loading operations. This paper reports a study on biofouling in an MBR to establish a relationship between critical flux, Jc, mixed liquor suspended solids (MLSS) (ranging from 5 to 20 g L-1) and volumetric loading rate (6.3 kg COD m-3 h-1) of palm oil mill effluent (POME). A lab-scale 100 L hybrid MBR consisting of anaerobic, anoxic, and aerobic reactors was used with flat sheet microfiltration (MF) submerged in the aerobic compartment. The food-to-microorganism (F/M) ratio was maintained at 0.18 kg COD kg-1 MLSSd-1. The biofouling tendency of the membrane was obtained based on the flux against the transmembrane pressure (TMP) behaviour. The critical flux is sensitive to the MLSS. At the MLSS 20 g L-1 the critical flux is about four times lower than that for the MLSS concentration of 5 g L-1. The results showed high removal efficiency of denitrification and nitrification up to 97% at the MLSS concentration 20 g L-1. The results show that the operation has to compromise between a high and a low MLSS concentration. The former will favour a higher removal rate, while the latter will favour a higher critical flux.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Chow MF, Yusop Z, Mohamed M
    Water Sci Technol, 2011;63(6):1211-6.
    PMID: 21436558 DOI: 10.2166/wst.2011.360
    This paper examines the storm runoff quality from a commercial area in south Johor, Malaysia. Six storm events with a total of 68 storm runoff samples were analyzed. Event Mean Concentration (EMC) for all constituents analysed showed large inter-event variation. Site mean concentrations (SMC) for total suspended solids (TSS), oil and grease (O&G), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate-nitrogen (NO(3)-N), nitrite-nitrogen (NO(2)-N), ammonia-nitrogen (NH(3)-N), total phosphorus (Total P) and Soluble P are 261, 4.31, 74, 192, 1.5, 0.006, 1.9, 1.12 and 0.38 mg/L, respectively. The SMCs at the studied site are higher than those reported in many urban catchments. The mean baseflow concentrations were higher than the EMCs for COD, Soluble P, NH(3)-N, NO(3)-N, Total P and NO(2)-N. However, the reverse was observed for TSS and O&G. All pollutants showed the occurrence of first flush phenomenon with the highest strength was observed for TSS, COD and NH(3)-N.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  18. Yoochatchaval W, Kumakura S, Tanikawa D, Yamaguchi T, Yunus MF, Chen SS, et al.
    Water Sci Technol, 2011;64(10):2001-8.
    PMID: 22105121 DOI: 10.2166/wst.2011.782
    The biodegradation characteristics of palm oil mill effluent (POME) and the related microbial community were studied in both actual sequential anaerobic ponds in Malaysia and enrichment cultures. The significant degradation of the POME was observed in the second pond, in which the temperature was 35-37 °C. In this pond, biodegradation of major long chain fatty acids (LCFA), such as palmitic acid (C16:0) and oleic acid (C18:1), was also confirmed. The enrichment culture experiment was conducted with different feeding substrates, i.e. POME, C16:0 and C18:1, at 35 °C. Good recovery of methane indicated biodegradation of feeds in the POME and C16:0 enrichments. The methane production rate of the C18:1 enrichment was slower than other substrates and inhibition of methanogenesis was frequently observed. Denaturing gradient gel electrophoresis (DGGE) analyses indicated the existence of LCFA-degrading bacteria, such as the genus Syntrophus and Syntorophomonas, in all enrichment cultures operated at 35 °C. Anaerobic degradation of the POME under mesophilic conditions was stably processed as compared with thermophilic conditions.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  19. Leo CP, Chai WK, Mohammad AW, Qi Y, Hoedley AF, Chai SP
    Water Sci Technol, 2011;64(1):199-205.
    PMID: 22053475
    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Show KY, Ng CA, Faiza AR, Wong LP, Wong LY
    Water Sci Technol, 2011;64(12):2439-44.
    PMID: 22170839 DOI: 10.2166/wst.2011.824
    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links