Displaying publications 101 - 120 of 513 in total

Abstract:
Sort:
  1. Al-Raad AA, Hanafiah MM
    J Environ Manage, 2021 Dec 15;300:113696.
    PMID: 34509809 DOI: 10.1016/j.jenvman.2021.113696
    Electrocoagulation (ECoag) technique has shown considerable potential as an effective method in separating different types of pollutants (including inorganic pollutants) from various sources of water at a lower cost, and that is environmentally friendly. The EC method's performance depends on several significant parameters, including current density, reactor geometry, pH, operation time, the gap between electrodes, and agitation speed. There are some challenges related to the ECoag technique, for example, energy consumption, and electrode passivation as well as its implementation at a larger scale. This review highlights the recent studies published about ECoag capacity to remove inorganic pollutants (including salts), the emerging reactors, and the effect of reactor geometry designs. In addition, this paper highlights the integration of the ECoag technique with other advanced technologies such as microwave and ultrasonic to achieve higher removal efficiencies. This paper also presents a critical discussion of the major and minor reactions of the electrocoagulation technique with several significant operational parameters, emerging designs of the ECoag cell, operating conditions, and techno-economic analysis. Our review concluded that optimizing the operating parameters significantly enhanced the efficiency of the ECoag technique and reduced overall operating costs. Electrodes geometry has been recommended to minimize the passivation phenomenon, promote the conductivity of the cell, and reduce energy consumption. In this review, several challenges and gaps were identified, and insights for future development were discussed. We recommend that future studies investigate the effect of other emerging parameters like perforated and ball electrodes on the ECoag technique.
    Matched MeSH terms: Water Purification*
  2. Jung C, Phal N, Oh J, Chu KH, Jang M, Yoon Y
    J Hazard Mater, 2015 Dec 30;300:808-814.
    PMID: 26340547 DOI: 10.1016/j.jhazmat.2015.08.025
    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.
    Matched MeSH terms: Water Purification/methods*
  3. Wan Ngah WS, Hanafiah MA
    Bioresour Technol, 2008 Jul;99(10):3935-48.
    PMID: 17681755
    The application of low-cost adsorbents obtained from plant wastes as a replacement for costly conventional methods of removing heavy metal ions from wastewater has been reviewed. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. Numerous chemicals have been used for modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. In this review, an extensive list of plant wastes as adsorbents including rice husks, spent grain, sawdust, sugarcane bagasse, fruit wastes, weeds and others has been compiled. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni.
    Matched MeSH terms: Water Purification/methods*
  4. Razak AR, Ujang Z, Ozaki H
    Water Sci Technol, 2007;56(8):161-8.
    PMID: 17978444
    Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C(6)OCL(5)Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITAB(TM) software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.
    Matched MeSH terms: Water Purification/methods*
  5. Ahmed MJ, Hameed BH
    Ecotoxicol Environ Saf, 2018 Mar;149:257-266.
    PMID: 29248838 DOI: 10.1016/j.ecoenv.2017.12.012
    Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. In this article, the fixed-bed adsorption of pharmaceuticals on various adsorbents was reviewed. The experimental breakthrough curves of these pollutants under various flow rates, inlet concentrations, and bed heights were examined. Fixed-bed data in terms of saturation uptakes, breakthrough time, and the length of the mass transfer zone were included. The three most popular breakthrough models, namely, Adams-Bohart, Thomas, and Yoon-Nelson, were also reviewed for the correlation of breakthrough curve data along with the evaluation of model parameters. Compared with the Adams-Bohart model, the Thomas and Yoon-Nelson more effectively predicted the breakthrough data for the studied pollutants.
    Matched MeSH terms: Water Purification/methods*
  6. Pramanik BK, Pramanik SK, Sarker DC, Suja F
    Environ Technol, 2017 Aug;38(15):1937-1942.
    PMID: 27666670 DOI: 10.1080/09593330.2016.1240716
    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.
    Matched MeSH terms: Water Purification
  7. Sim, F.S., Mohd Irwan Lu, N.A.L., Lee, Z.E.T., Mohamed, M.
    MyJurnal
    In this study, agriculture biomass was used to remove dissolved organic matter from peat swamp runoff. The functional groups and morphological properties of 6 tropical agriculture biomasses (coconut husk, rice husk, empty fruit bunch, sago hampas, saw dust and banana trunk) in their raw and citric acid–treated states were examined. The Fourier transform infrared (FTIR) spectra showed that various biomasses were typically characterised with lignocellulosic compounds. The spectra analysis further demonstrated that citric acid treatment resulted in the dissolution of lignin and hemicelluloses to various extents where carboxyl groups were also introduced. These changes hypothetically suggest improved adsorption ability. Treatment of peat swamp runoff with various untreated biomasses showed no adsorption. With the modified biomass, adsorption was evidenced, with rice husk illustrating the highest removal efficiency of 60% to 65%.The biosorbent can be used in the water treatment process especially for treating water with a high dissolved organic matter content. The spent sorbent can be subsequently applied as a soil conditioner as the dissolved organic fraction, commonly known as humic matter, possesses important agricultural value.
    Matched MeSH terms: Water Purification
  8. Aroua MK, Zuki FM, Sulaiman NM
    J Hazard Mater, 2007 Aug 25;147(3):752-8.
    PMID: 17339078
    This study deals with the removal of chromium species from aqueous dilute solutions using polymer-enhanced ultrafiltration (PEUF) process. Three water soluble polymers, namely chitosan, polyethyleneimine (PEI) and pectin were selected for this study. The ultrafiltration studies were carried out using a laboratory scale ultrafiltration system equipped with 500,000 MWCO polysulfone hollow fiber membrane. The effects of pH and polymer composition on rejection coefficient and permeate flux at constant pressure have been investigated. For Cr(III), high rejections approaching 100% were obtained at pH higher than 7 for the three tested polymers. With chitosan and pectin, Cr(VI) retention showed a slight increase with solution pH and did not exceed a value of 50%. An interesting result was obtained with PEI. The retention of Cr(VI) approached 100% at low pH and decreased when the pH was increased. This behavior is opposite to what one can expect in the polymer-enhanced ultrafiltration of heavy metals. Furthermore, the concentration of polymer was found to have little effect on rejection. Permeate flux remained almost constant around 25% of pure water flux.
    Matched MeSH terms: Water Purification/methods*
  9. Hena S
    J Hazard Mater, 2010 Sep 15;181(1-3):474-9.
    PMID: 20627405 DOI: 10.1016/j.jhazmat.2010.05.037
    Adsorption capacity of Cr(VI) onto chitosan coated with poly 3-methyl thiophene synthesized chemically was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees), standard enthalpy (DeltaH degrees) and standard entropy (DeltaS degrees) were evaluated. Adsorption kinetics of Cr(VI) ions onto chitosan coated with poly 3-methyl thiophene were analyzed by pseudo-first-order and pseudo-second-order models. The Langmuir, Freundlich and Temkin isotherms were used to describe the adsorption equilibrium studies of chitosan coated with poly 3-methyl thiophene at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherms in the temperature range studied. The results show that the chitosan coated with poly 3-methyl thiophene can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported. In order to find out the possibility of regeneration and reuse of exhausted adsorbent, desorption studies were also performed.
    Matched MeSH terms: Water Purification/methods
  10. Chong MF, Lee KP, Chieng HJ, Syazwani Binti Ramli II
    Water Res, 2009 Jul;43(13):3326-34.
    PMID: 19487007 DOI: 10.1016/j.watres.2009.04.044
    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.
    Matched MeSH terms: Water Purification/economics; Water Purification/methods*
  11. Muhamad MS, Salim MR, Lau WJ, Hadibarata T, Yusop Z
    Environ Technol, 2016 Aug;37(15):1959-69.
    PMID: 26729509 DOI: 10.1080/09593330.2015.1137359
    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.
    Matched MeSH terms: Water Purification
  12. Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C
    J Hazard Mater, 2009 Aug 15;167(1-3):966-9.
    PMID: 19231076 DOI: 10.1016/j.jhazmat.2009.01.081
    Removal of arsenic from aqueous solution was carried out using electrocoagulation. Experiments were conducted using mild steel sacrificial anode covering wide range in operating conditions to assess the removal efficiency. The maximum arsenic removal efficiency was recorded as 94% under optimum condition. The electrocoagulation mechanism of arsenic removal has been developed to understand the effect of applied charge and electrolyte pH on arsenic removal efficiency. Further the experimental data were tested with different adsorption isotherm model to describe the electrocoagulation process.
    Matched MeSH terms: Water Purification/methods
  13. Pramanik BK, Pramanik SK, Suja F
    J Water Health, 2016 Feb;14(1):90-6.
    PMID: 26837833 DOI: 10.2166/wh.2015.159
    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.
    Matched MeSH terms: Water Purification/methods*
  14. Yanyan L, Kurniawan TA, Zhu M, Ouyang T, Avtar R, Dzarfan Othman MH, et al.
    J Environ Manage, 2018 Nov 15;226:365-376.
    PMID: 30138836 DOI: 10.1016/j.jenvman.2018.08.032
    Acetaminophen (Ace) is a trace pollutant widely found in sewage treatment plant (STP) wastewater. We test the feasibility of coconut shell waste, a low cost adsorbent from coconut industry, for removing Ace from synthetic solution in a fixed-bed column adsorption. To enhance its performance, the surface of granular activated carbon (GAC) was pre-treated with NaOH, HNO3, ozone, and/or chitosan respectively. The results show that the chemical modification of the GAC's surface with various chemicals has enhanced its Ace removal during the column operations. Among the modified adsorbents, the ozone-treated GAC stands out for the highest Ace adsorption capacity (38.2 mg/g) under the following conditions: 40 mg/L of Ace concentration, 2 mL/min of flow rate, 45 cm of bed depth. Both the Thomas and the Yoon-Nelson models are applicable to simulate the experimental results of the column operations with their adsorption capacities: ozone-treated GAC (20.88 mg/g) > chitosan-coated GAC (16.67 mg/g) > HNO3-treated GAC (11.09 mg/g) > NaOH-treated GAC (7.57 mg/g) > as-received GAC (2.84 mg/g). This suggests that the ozone-treated GAC is promising and suitable for Ace removal in a fixed-bed reactor.
    Matched MeSH terms: Water Purification*
  15. Yusof AM, Malek NA, Kamaruzaman NA, Adil M
    Environ Technol, 2010 Jan;31(1):41-6.
    PMID: 20232677 DOI: 10.1080/09593330903313794
    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).
    Matched MeSH terms: Water Purification/methods*
  16. Lee SH, Choi H, Kim KW
    Environ Geochem Health, 2018 Oct;40(5):2119-2129.
    PMID: 29536286 DOI: 10.1007/s10653-018-0087-y
    To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1-2 mm. On the PES-LDH surface, nanosized CLDH (100-150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.
    Matched MeSH terms: Water Purification/methods
  17. Raoov M, Mohamad S, Abas MR
    J Hazard Mater, 2013 Dec 15;263 Pt 2:501-16.
    PMID: 24231314 DOI: 10.1016/j.jhazmat.2013.10.003
    Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m(2)g(-1)). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as -55.99 J/Kmol and -18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π-π interaction are the main processes involved in the adsorption process.
    Matched MeSH terms: Water Purification/methods
  18. Sha'arani S, Azizan SNF, Md Akhir FN, Muhammad Yuzir MA, Othman N, Zakaria Z, et al.
    Water Sci Technol, 2019 Nov;80(9):1787-1795.
    PMID: 32039910 DOI: 10.2166/wst.2019.433
    Staphylococcus sp. as Gram-positive and Escherichia coli as Gram-negative are bacterial pathogens and can cause primary bloodstream infections and food poisoning. Coagulation, flocculation, and sedimentation processes could be a reliable treatment for bacterial removal because suspended, colloidal, and soluble particles can be removed. Chemical coagulants, such as alum, are commonly used. However, these chemical coagulants are not environmentally friendly. This present study evaluated the effectiveness of coagulation, flocculation, and sedimentation processes for removing Staphylococcus sp. and E. coli using diatomite with standard jar test equipment at different pH values. Staphylococcus sp. demonstrated 85.61% and 77.23% significant removal in diatomite and alum, respectively, at pH 5. At pH 7, the removal efficiency decreased to 79.41% and 64.13% for Staphylococcus sp. and E. coli, respectively. At pH 9, there was a decrease in Staphylococcus sp. after adding diatomite or alum compared with that of E. coli. The different removal efficiencies of the Gram-positive and Gram-negative bacteria could be owing to the membrane composition and different structures in the bacteria. This study indicates that diatomite has higher efficiency in removing bacteria at pH 5 and can be considered as a potential coagulant to replace alum for removing bacteria by the coagulation process.
    Matched MeSH terms: Water Purification*
  19. Lim PE, Mak KY, Mohamed N, Noor AM
    Water Sci Technol, 2003;48(5):307-13.
    PMID: 14621178
    This study was conducted to: (1) evaluate the performance of constructed wetlands in removing Zn, Pb and Cd, respectively, and Zn, Pb, Cd and Cu in combination and (2) investigate the speciation patterns of the dissolved metals differentiated according to their detectability by anodic stripping voltammetry (ASV) and their lability towards Chelex resin along the treatment path of metal-containing wastewater in horizontal subsurface-flow constructed wetlands. Four laboratory scale wetland units planted with cattails (Typha latifolia) were operated outdoors for six months. Three of the units were, respectively, fed with primary-treated domestic wastewater spiked with Zn(II), Pb(II) and Cd(II) whilst the fourth was spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II). The results demonstrate that a metal removal efficiency of over 99% was achievable for wetland units treating the metals singly or in combination provided the sorption capacity of the media was not exceeded. When treating the metals in combination, an antagonistic effect, more significantly for Pb and Cd, on the sorptive metal uptake by media was observed. Based on the metal speciation patterns, the wetland system seemed to be capable of maintaining the ASV-labile metal species at relatively low level (< 10%) before media exhaustion.
    Matched MeSH terms: Water Purification/methods*
  20. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B
    J Environ Manage, 2011 Oct;92(10):2355-88.
    PMID: 21708421 DOI: 10.1016/j.jenvman.2011.06.009
    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links