METHODS: All Apical HCM patients coming for clinic visits at the Institut Jantung Negara from September 2017 to September 2018 were included. We assessed their echocardiography images, grade their diastolic function and reviewed their ECG on presentation.
RESULTS: Fifty patient were included, 82% (n=41) were males and 18% (n=9) females. The diastolic function grading of 37 (74%) patients were able to be determined using the updated 2016 American Society of Echocardiography (ASE) diastolic guidelines. Fifty percent (n=25) had the typical ace-ofspades shape left ventricle (LV) appearance in diastole and 12% (n=6) had apical pouch. All patients had T inversion in the anterior leads of their ECG, and only 52% (n=26) fulfilled the ECG left ventricular hypertrophy (LVH) criteria. Majority of our patients presented with symptoms of chest pain (52%, n=26) and dyspnoea (42%, n=21).
CONCLUSION: The updated 2016 ASE guideline makes it easier to evaluate LV diastolic function in most patients with Apical HCM. It also helps in elucidating the aetiology of dyspnoea, based on left atrial pressure. Clinicians should have a high index of suspicion for Apical HCM when faced with deep T inversion on ECG, in addition to a thick LV apex with an aceof- spades appearance during diastole.
METHODS: This was a single-center, retrospective study. Echocardiographic assessment of the LV geometry, mass, and free wall thickness was performed before stenting and before the arterial switch operation. Patients then underwent the arterial switch operation, and the postoperative outcomes were reviewed.
RESULTS: There were 11 consecutive patients (male, 81.8%; mean age at stenting, 43.11 ± 18.19 days) with TGA-IVS with involuted LV who underwent LV retraining by ductal stenting from July 2013 to December 2017. Retraining by ductus stenting failed in 4 patients (36.3%). Two patients required pulmonary artery banding, and another 2 had an LV mass index of less than 35 g/m2. Patients in the successful group had improved LV mass index from 45.14 ± 17.91 to 81.86 ± 33.11g/m2 (p = 0.023) compared with 34.50 ± 10.47 to 20.50 ± 9.88 g/m2 (p = 0.169) and improved LV geometry after ductal stenting. The failed group was associated with an increased need for extracorporeal support (14.5% vs 50%, p = 0.012). An atrial septal defect-to-interatrial septum length ratio of more than 0.38 was associated with failed LV retraining.
CONCLUSIONS: Ductal stenting is an effective method to retrain the involuted LV in TGA-IVS. A large atrial septal defect (atrial septal defect-to-interatrial septum length ratio >0.38) was associated with poor response to LV retraining.