Displaying publications 101 - 120 of 169 in total

Abstract:
Sort:
  1. Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JE, Jen Hong T, et al.
    Comput Biol Med, 2016 12 01;79:250-258.
    PMID: 27825038 DOI: 10.1016/j.compbiomed.2016.10.022
    Fatty liver disease (FLD) is reversible disease and can be treated, if it is identified at an early stage. However, if diagnosed at the later stage, it can progress to an advanced liver disease such as cirrhosis which may ultimately lead to death. Therefore, it is essential to detect it at an early stage before the disease progresses to an irreversible stage. Several non-invasive computer-aided techniques are proposed to assist in the early detection of FLD and cirrhosis using ultrasound images. In this work, we are proposing an algorithm to discriminate automatically the normal, FLD and cirrhosis ultrasound images using curvelet transform (CT) method. Higher order spectra (HOS) bispectrum, HOS phase, fuzzy, Kapoor, max, Renyi, Shannon, Vajda and Yager entropies are extracted from CT coefficients. These extracted features are subjected to locality sensitive discriminant analysis (LSDA) feature reduction method. Then these LSDA coefficients ranked based on F-value are fed to different classifiers to choose the best performing classifier using minimum number of features. Our proposed technique can characterize normal, FLD and cirrhosis using probabilistic neural network (PNN) classifier with an accuracy of 97.33%, specificity of 100.00% and sensitivity of 96.00% using only six features. In addition, these chosen features are used to develop a liver disease index (LDI) to differentiate the normal, FLD and cirrhosis classes using a single number. This can significantly help the radiologists to discriminate FLD and cirrhosis in their routine liver screening.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  2. Tan M, Aghaei F, Wang Y, Zheng B
    Phys Med Biol, 2017 01 21;62(2):358-376.
    PMID: 27997380 DOI: 10.1088/1361-6560/aa5081
    The purpose of this study is to evaluate a new method to improve performance of computer-aided detection (CAD) schemes of screening mammograms with two approaches. In the first approach, we developed a new case based CAD scheme using a set of optimally selected global mammographic density, texture, spiculation, and structural similarity features computed from all four full-field digital mammography images of the craniocaudal (CC) and mediolateral oblique (MLO) views by using a modified fast and accurate sequential floating forward selection feature selection algorithm. Selected features were then applied to a 'scoring fusion' artificial neural network classification scheme to produce a final case based risk score. In the second approach, we combined the case based risk score with the conventional lesion based scores of a conventional lesion based CAD scheme using a new adaptive cueing method that is integrated with the case based risk scores. We evaluated our methods using a ten-fold cross-validation scheme on 924 cases (476 cancer and 448 recalled or negative), whereby each case had all four images from the CC and MLO views. The area under the receiver operating characteristic curve was AUC  =  0.793  ±  0.015 and the odds ratio monotonically increased from 1 to 37.21 as CAD-generated case based detection scores increased. Using the new adaptive cueing method, the region based and case based sensitivities of the conventional CAD scheme at a false positive rate of 0.71 per image increased by 2.4% and 0.8%, respectively. The study demonstrated that supplementary information can be derived by computing global mammographic density image features to improve CAD-cueing performance on the suspicious mammographic lesions.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*
  3. Abdulhay E, Mohammed MA, Ibrahim DA, Arunkumar N, Venkatraman V
    J Med Syst, 2018 Feb 17;42(4):58.
    PMID: 29455440 DOI: 10.1007/s10916-018-0912-y
    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  4. Yong YL, Tan LK, McLaughlin RA, Chee KH, Liew YM
    J Biomed Opt, 2017 12;22(12):1-9.
    PMID: 29274144 DOI: 10.1117/1.JBO.22.12.126005
    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  5. Mohafez H, Ahmad SA, Hadizadeh M, Moghimi S, Roohi SA, Marhaban MH, et al.
    Skin Res Technol, 2018 Feb;24(1):45-53.
    PMID: 28557064 DOI: 10.1111/srt.12388
    PURPOSE: We aimed to develop a method for quantitative assessment of wound healing in ulcerated diabetic feet.

    METHODS: High-frequency ultrasound (HFU) images of 30 wounds were acquired in a controlled environment on post-debridement days 7, 14, 21, and 28. Meaningful features portraying changes in structure and intensity of echoes during healing were extracted from the images, their relevance and discriminatory power being verified by analysis of variance. Relative analysis of tissue healing was conducted by developing a features-based healing function, optimised using the pattern-search method. Its performance was investigated through leave-one-out cross-validation technique and reconfirmed using principal component analysis.

    RESULTS: The constructed healing function could depict tissue changes during healing with 87.8% accuracy. The first principal component derived from the extracted features demonstrated similar pattern to the constructed healing function, accounting for 86.3% of the data variance.

    CONCLUSION: The developed wound analysis technique could be a viable tool in quantitative assessment of diabetic foot ulcers during healing.

    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  6. Acharya UR, Molinari F, Sree SV, Swapna G, Saba L, Guerriero S, et al.
    Technol Cancer Res Treat, 2015 Jun;14(3):251-61.
    PMID: 25230716 DOI: 10.1177/1533034614547445
    Ovarian cancer is the most common cause of death among gynecological malignancies. We discuss different types of clinical and nonclinical features that are used to study and analyze the differences between benign and malignant ovarian tumors. Computer-aided diagnostic (CAD) systems of high accuracy are being developed as an initial test for ovarian tumor classification instead of biopsy, which is the current gold standard diagnostic test. We also discuss different aspects of developing a reliable CAD system for the automated classification of ovarian cancer into benign and malignant types. A brief description of the commonly used classifiers in ultrasound-based CAD systems is also given.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  7. Pszczolkowski S, Law ZK, Gallagher RG, Meng D, Swienton DJ, Morgan PS, et al.
    Comput Biol Med, 2019 Mar;106:126-139.
    PMID: 30711800 DOI: 10.1016/j.compbiomed.2019.01.022
    BACKGROUND: Spontaneous intracerebral haemorrhage (SICH) is a common condition with high morbidity and mortality. Segmentation of haematoma and perihaematoma oedema on medical images provides quantitative outcome measures for clinical trials and may provide important markers of prognosis in people with SICH.

    METHODS: We take advantage of improved contrast seen on magnetic resonance (MR) images of patients with acute and early subacute SICH and introduce an automated algorithm for haematoma and oedema segmentation from these images. To our knowledge, there is no previously proposed segmentation technique for SICH that utilises MR images directly. The method is based on shape and intensity analysis for haematoma segmentation and voxel-wise dynamic thresholding of hyper-intensities for oedema segmentation.

    RESULTS: Using Dice scores to measure segmentation overlaps between labellings yielded by the proposed algorithm and five different expert raters on 18 patients, we observe that our technique achieves overlap scores that are very similar to those obtained by pairwise expert rater comparison. A further comparison between the proposed method and a state-of-the-art Deep Learning segmentation on a separate set of 32 manually annotated subjects confirms the proposed method can achieve comparable results with very mild computational burden and in a completely training-free and unsupervised way.

    CONCLUSION: Our technique can be a computationally light and effective way to automatically delineate haematoma and oedema extent directly from MR images. Thus, with increasing use of MR images clinically after intracerebral haemorrhage this technique has the potential to inform clinical practice in the future.

    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  8. Silva H, Chellappan K, Karunaweera N
    Comput Math Methods Med, 2021;2021:4208254.
    PMID: 34873414 DOI: 10.1155/2021/4208254
    Skin lesions are a feature of many diseases including cutaneous leishmaniasis (CL). Ulcerative lesions are a common manifestation of CL. Response to treatment in such lesions is judged through the assessment of the healing process by regular clinical observations, which remains a challenge for the clinician, health system, and the patient in leishmaniasis endemic countries. In this study, image processing was initially done using 40 CL lesion color images that were captured using a mobile phone camera, to establish a technique to extract features from the image which could be related to the clinical status of the lesion. The identified techniques were further developed, and ten ulcer images were analyzed to detect the extent of inflammatory response and/or signs of healing using pattern recognition of inflammatory tissue captured in the image. The images were preprocessed at the outset, and the quality was improved using the CIE L∗a∗b color space technique. Furthermore, features were extracted using the principal component analysis and profiled using the signal spectrogram technique. This study has established an adaptive thresholding technique ranging between 35 and 200 to profile the skin lesion images using signal spectrogram plotted using Signal Analyzer in MATLAB. The outcome indicates its potential utility in visualizing and assessing inflammatory tissue response in a CL ulcer. This approach is expected to be developed further to a mHealth-based prediction algorithm to enable remote monitoring of treatment response of cutaneous leishmaniasis.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  9. Msayib Y, Harston GWJ, Tee YK, Sheerin F, Blockley NP, Okell TW, et al.
    Neuroimage Clin, 2019;23:101833.
    PMID: 31063943 DOI: 10.1016/j.nicl.2019.101833
    BACKGROUND: Amide proton transfer (APT) imaging may help identify the ischaemic penumbra in stroke patients, the classical definition of which is a region of tissue around the ischaemic core that is hypoperfused and metabolically stressed. Given the potential of APT imaging to complement existing imaging techniques to provide clinically-relevant information, there is a need to develop analysis techniques that deliver a robust and repeatable APT metric. The challenge to accurate quantification of an APT metric has been the heterogeneous in-vivo environment of human tissue, which exhibits several confounding magnetisation transfer effects including spectrally-asymmetric nuclear Overhauser effects (NOEs). The recent literature has introduced various model-free and model-based approaches to analysis that seek to overcome these limitations.

    OBJECTIVES: The objective of this work was to compare quantification techniques for CEST imaging that specifically separate APT and NOE effects for application in the clinical setting. Towards this end a methodological comparison of different CEST quantification techniques was undertaken in healthy subjects, and around clinical endpoints in a cohort of acute stroke patients.

    METHODS: MRI data from 12 patients presenting with ischaemic stroke were retrospectively analysed. Six APT quantification techniques, comprising model-based and model-free techniques, were compared for repeatability and ability for APT to distinguish pathological tissue in acute stroke.

    RESULTS: Robustness analysis of six quantification techniques indicated that the multi-pool model-based technique had the smallest contrast between grey and white matter (2%), whereas model-free techniques exhibited the highest contrast (>30%). Model-based techniques also exhibited the lowest spatial variability, of which 4-pool APTR∗ was by far the most uniform (10% coefficient of variation, CoV), followed by 3-pool analysis (20%). Four-pool analysis yielded the highest ischaemic core contrast-to-noise ratio (0.74). Four-pool modelling of APT effects was more repeatable (3.2% CoV) than 3-pool modelling (4.6% CoV), but this appears to come at the cost of reduced contrast between infarct growth tissue and normal tissue.

    CONCLUSION: The multi-pool measures performed best across the analyses of repeatability, spatial variability, contrast-to-noise ratio, and grey matter-white matter contrast, and might therefore be more suitable for use in clinical imaging of acute stroke. Addition of a fourth pool that separates NOEs and semisolid effects appeared to be more biophysically accurate and provided better separation of the APT signal compared to the 3-pool equivalent, but this improvement appeared be accompanied by reduced contrast between infarct growth tissue and normal tissue.

    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  10. Ahmad K, Yan Y, Bless DM
    J Voice, 2012 Mar;26(2):239-53.
    PMID: 21621975 DOI: 10.1016/j.jvoice.2011.02.001
    The purpose of the study was to investigate relationships between vocal fold vibrations and voice quality. Laryngeal images obtained from high-speed digital imaging (HSDI) were examined for their open-closed timing characteristics and perturbation values. A customized software delineated the glottal edges and used the Hilbert transform-based method of analysis to provide objective quantification of glottal perturbation. Overlay tracings of the transformed glottal cycles provided visual patterns on the overall vibratory dynamics. In this paper, we described the use of this method in looking at vibratory characteristics of a group of young female speakers (N=23). We found that, females with no voice complaints and who had been perceived to have normal voices were not a homogeneous group in terms of their glottal vibratory patterns during phonation. Their vibratory patterns showed characteristics similar to exemplar voices targeted to be clear (50%), pressed (27%), breathy (15%), or a mixed quality (8%). Perturbation range in terms of cycle-to-cycle frequency and amplitude was small and did not discriminate patterns. All these patterns yielded perceptually normal voices suggesting that in normal young speakers, the level of perturbation may be more important to the judgment than the actual pattern of closure.
    Matched MeSH terms: Image Interpretation, Computer-Assisted
  11. Schwartz TM, Hillis SL, Sridharan R, Lukyanchenko O, Geiser W, Whitman GJ, et al.
    J Med Imaging (Bellingham), 2020 Mar;7(2):022408.
    PMID: 32042859 DOI: 10.1117/1.JMI.7.2.022408
    Purpose: Computer-aided detection (CAD) alerts radiologists to findings potentially associated with breast cancer but is notorious for creating false-positive marks. Although a previous paper found that radiologists took more time to interpret mammograms with more CAD marks, our impression was that this was not true in actual interpretation. We hypothesized that radiologists would selectively disregard these marks when present in larger numbers. Approach: We performed a retrospective review of bilateral digital screening mammograms. We use a mixed linear regression model to assess the relationship between number of CAD marks and ln (interpretation time) after adjustment for covariates. Both readers and mammograms were treated as random sampling units. Results: Ten radiologists, with median experience after residency of 12.5 years (range 6 to 24) interpreted 1832 mammograms. After accounting for number of images, Breast Imaging Reporting and Data System category, and breast density, the number of CAD marks was positively associated with longer interpretation time, with each additional CAD mark proportionally increasing median interpretation time by 4.35% for a typical reader. Conclusions: We found no support for our hypothesis that radiologists will selectively disregard CAD marks when they are present in larger numbers.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted
  12. Shaffiq Said Rahmat SM, Abdul Karim MK, Che Isa IN, Abd Rahman MA, Noor NM, Hoong NK
    Comput Biol Med, 2020 08;123:103840.
    PMID: 32658782 DOI: 10.1016/j.compbiomed.2020.103840
    BACKGROUND: Unoptimized protocols, including a miscentered position, might affect the outcome of diagnostic in CT examinations. In this study, we investigate the effects of miscentering position during CT head examination on the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

    METHOD: We simulate the CT head examination using a water phantom with a standard protocol (120 kVp/180 mAs) and a low dose protocol (100 kVp/142 mAs). The table height was adjusted to simulate miscentering by 5 cm from the isocenter, where the height was miscentered superiorly (MCS) at 109, 114, 119, and 124 cm, and miscentered inferiorly (MCI) at 99, 94, 89, and 84 cm. Seven circular regions of interest were used, with one drawn at the center, four at the peripheral area of the phantom, and two at the background area of the image.

    RESULTS: For the standard protocol, the mean CNR decreased uniformly as table height increased and significantly differed (p 

    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted
  13. Lau S, Ng KH, Abdul Aziz YF
    Br J Radiol, 2016 Oct;89(1066):20160258.
    PMID: 27452264 DOI: 10.1259/bjr.20160258
    OBJECTIVE: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise.

    METHODS: 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images.

    RESULTS: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p 

    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted
  14. Zakaria NM, Yusoff NI, Hardwiyono S, Nayan KA, El-Shafie A
    ScientificWorldJournal, 2014;2014:594797.
    PMID: 25276854 DOI: 10.1155/2014/594797
    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  15. Yin LK, Rajeswari M
    Biomed Mater Eng, 2014;24(6):3333-41.
    PMID: 25227043 DOI: 10.3233/BME-141156
    To segment an image using the random walks algorithm; users are often required to initialize the approximate locations of the objects and background in the image. Due to its segmenting model that is mainly reflected by the relationship among the neighborhood pixels and its boundary conditions, random walks algorithm has made itself sensitive to the inputs of the seeds. Instead of considering the relationship between the neighborhood pixels solely, an attempt has been made to modify the weighting function that accounts for the intensity changes between the neighborhood nodes. Local affiliation within the defined neighborhood region of the two nodes is taken into consideration by incorporating an extra penalty term into the weighting function. Besides that, to better segment images, particularly medical images with texture features, GLCM variance is incorporated into the weighting function through kernel density estimation (KDE). The probability density of each pixel belonging to the initialized seeds is estimated and integrated into the weighting function. To test the performance of the proposed weighting model, several medical images that mainly made up of 174-brain tumor images are experimented. These experiments establish that the proposed method produces better segmentation results than the original random walks.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  16. Gan HS, Tan TS, Wong LX, Tham WK, Sayuti KA, Abdul Karim AH, et al.
    Biomed Mater Eng, 2014;24(6):3145-57.
    PMID: 25227024 DOI: 10.3233/BME-141137
    In medical image segmentation, manual segmentation is considered both labor- and time-intensive while automated segmentation often fails to segment anatomically intricate structure accordingly. Interactive segmentation can tackle shortcomings reported by previous segmentation approaches through user intervention. To better reflect user intention, development of suitable editing functions is critical. In this paper, we propose an interactive knee cartilage extraction software that covers three important features: intuitiveness, speed, and convenience. The segmentation is performed using multi-label random walks algorithm. Our segmentation software is simple to use, intuitive to normal and osteoarthritic image segmentation and efficient using only two third of manual segmentation's time. Future works will extend this software to three dimensional segmentation and quantitative analysis.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  17. Badsha S, Reza AW, Tan KG, Dimyati K
    J Digit Imaging, 2013 Dec;26(6):1107-15.
    PMID: 23515843 DOI: 10.1007/s10278-013-9585-8
    Diabetic retinopathy (DR) is increasing progressively pushing the demand of automatic extraction and classification of severity of diseases. Blood vessel extraction from the fundus image is a vital and challenging task. Therefore, this paper presents a new, computationally simple, and automatic method to extract the retinal blood vessel. The proposed method comprises several basic image processing techniques, namely edge enhancement by standard template, noise removal, thresholding, morphological operation, and object classification. The proposed method has been tested on a set of retinal images. The retinal images were collected from the DRIVE database and we have employed robust performance analysis to evaluate the accuracy. The results obtained from this study reveal that the proposed method offers an average accuracy of about 97 %, sensitivity of 99 %, specificity of 86 %, and predictive value of 98 %, which is superior to various well-known techniques.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  18. Wong SC, Nawawi O, Ramli N, Abd Kadir KA
    Acad Radiol, 2012 Jun;19(6):701-7.
    PMID: 22578227 DOI: 10.1016/j.acra.2012.02.012
    The aim of this study was to compare conventional two-dimensional (2D) digital subtraction angiography (DSA) with three-dimensional (3D) rotational DSA in the investigation of intracranial aneurysm in terms of detection, size measurement, neck diameter, neck delineation, and relationship with surrounding vessels. A further aim was to compare radiation dose, contrast volume, and procedural time between the two protocols.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*
  19. Govindaraju K, Badruddin IA, Viswanathan GN, Ramesh SV, Badarudin A
    Phys Med, 2013 May;29(3):225-32.
    PMID: 22704601 DOI: 10.1016/j.ejmp.2012.03.008
    Coronary Artery Disease (CAD) is responsible for most of the deaths in patients with cardiovascular diseases. Diagnostic coronary angiography analysis offers an anatomical knowledge of the severity of the stenosis. The functional or physiological significance is more valuable than the anatomical significance of CAD. Clinicians assess the functional severity of the stenosis by resorting to an invasive measurement of the pressure drop and flow. Hemodynamic parameters, such as pressure wire assessment fractional flow reserve (FFR) or Doppler wire assessment coronary flow reserve (CFR) are well-proven techniques to evaluate the physiological significance of the coronary artery stenosis in the cardiac catheterization laboratory. Between the two techniques mentioned above, the FFR is seen as a very useful index. The presence of guide wire reduces the coronary flow which causes the underestimation of pressure drop across the stenosis which leads to dilemma for the clinicians in the assessment of moderate stenosis. In such condition, the fundamental fluid mechanics is useful in the development of new functional severity parameters such as pressure drop coefficient and lesion flow coefficient. Since the flow takes place in a narrowed artery, the blood behaves as a non-Newtonian fluid. Computational fluid dynamics (CFD) allows a complete coronary flow simulation to study the relationship between the pressure and flow. This paper aims at explaining (i) diagnostic modalities for the evaluation of the CAD and valuable insights regarding FFR in the evaluation of the functional severity of the CAD (ii) the role of fluid dynamics in measuring the severity of CAD.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  20. Pasha MF, Hong KS, Rajeswari M
    PMID: 22255503 DOI: 10.1109/IEMBS.2011.6091280
    Automating the detection of lesions in liver CT scans requires a high performance and robust solution. With CT-scan start to become the norm in emergency department, the need for a fast and efficient liver lesions detection method is arising. In this paper, we propose a fast and evolvable method to profile the features of pre-segmented healthy liver and use it to detect the presence of liver lesions in emergency scenario. Our preliminary experiment with the MICCAI 2007 grand challenge datasets shows promising results of a fast training time, ability to evolve the produced healthy liver profiles, and accurate detection of the liver lesions. Lastly, the future work directions are also presented.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links