Displaying publications 1241 - 1260 of 3446 in total

Abstract:
Sort:
  1. Illyaaseen Z, Ngeow YF, Yap SF, Ng HF
    Malays J Pathol, 2021 Apr;43(1):55-61.
    PMID: 33903306
    Candida albicans is an important opportunistic fungal pathogen capable of causing fatal systemic infections in humans. Presently in Malaysia, there is little information available on the genetic diversity of this organism and trends in behavioural characteristics. In this project, three genotyping methods: 25S rDNA genotyping, Alternative Lengthening of Telomerase (ALT) sequence typing and Multi-Locus Sequence Typing (MLST) were applied to study the genetic diversity of strains from infected hospital in-patients and asymptomatic individuals in the community. The results showed that, with the 25S rDNA genotyping, as in other parts of the world, the most common genotype was type A which accounted for approximately 70% of the 111 isolates tested. Further typing with the ALT sequence showed type 3 to be the most common in the isolates tested. MLST analysis revealed many possibly novel sequence types, as well as a statistically significant association between pathogenicity and a group of closely related isolates, most of which were from hospital samples. Further work on genotypes associated with enhanced virulence will help to clarify the value of genotyping for clinical and epidemiological investigations.
    Matched MeSH terms: DNA, Ribosomal
  2. Xu S, Xue Y, Guo F, Xu M, Gopinath SCB, Mao X
    3 Biotech, 2020 May;10(5):227.
    PMID: 32373419 DOI: 10.1007/s13205-020-02216-2
    Herein, a rapid and sensitive current-volt measurement was developed for identifying the IS6110 DNA sequence to diagnose Mycobacterium tuberculosis (TB). An aminated capture probe was immobilized on a 1,1'-carbonyldiimidazole-functionalized interdigitated electrode (IDE) silica substrate, and the target sequence was detected by complementation. It was found that all tested concentrations displayed a higher response in current changes than the control, and the limit of detection was 10 fM. The sensitivity ranged from 1 to 10 fM. The control sequences with single-, triple-mismatch and noncomplementary sequences showed great discrimination. This rapid and easy DNA detection method helps to identify M. tuberculosis for early-stage diagnosis of TB.
    Matched MeSH terms: DNA
  3. Bizini, Fionna Vincent
    MyJurnal
    Fascioliasis is a major parasitic disease caused by the liver flukes, Fasciola hepatica and Fasciola gigantica in Malaysia. On 31st May 2016, three cases of fasciolasis among humans were notified in Tuaran involving two localities.
    Matched MeSH terms: DNA, Helminth
  4. Alhaji SY, Ngai SC, Abdullah S
    Biotechnol Genet Eng Rev, 2019 Apr;35(1):1-25.
    PMID: 30514178 DOI: 10.1080/02648725.2018.1551594
    DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
    Matched MeSH terms: DNA Methylation
  5. Kaur A, Lee LH, Chow SC, Fang CM
    Int Rev Immunol, 2018;37(5):229-248.
    PMID: 29985675 DOI: 10.1080/08830185.2018.1469629
    Transcription factors are gene regulators that activate or repress target genes. One family of the transcription factors that have been extensively studied for their crucial role in regulating gene network in the immune system is the interferon regulatory factors (IRFs). IRFs possess a novel turn-helix turn motif that recognizes a specific DNA consensus found in the promoters of many genes that are involved in immune responses. IRF5, a member of IRFs has recently gained much attention for its role in regulating inflammatory responses and autoimmune diseases. Here, we discuss the role of IRF5 in regulating immune cells functions and how the dysregulation of IRF5 contributes to the pathogenesis of immune disorders. We also review the latest findings of potential IRF5 inhibitors that modulate IRF5 activity in the effort of developing therapeutic approaches for treating inflammatory disorders.
    Matched MeSH terms: DNA
  6. Low VL, Srisuka W, Saeung A, Tan TK, Ya'cob Z, Yeong YS, et al.
    J Med Entomol, 2020 09 07;57(5):1675-1678.
    PMID: 32333022 DOI: 10.1093/jme/tjaa081
    Previous studies suggested the presence of species complex in the so-called Simulium asakoae Takaoka & Davies (Diptera: Simuliidae) in Thailand due to its high morphological variability and genetic divergence. To investigate whether the true S. asakoae is present in Thailand, we performed a detailed morphological identification of S. asakoae and compared its DNA barcodes with the morphospecies S. asakoae from Myanmar and the typical S. asakoae from Malaysia. Phylogenetic analysis revealed the Thai materials analyzed in this study were indeed genetically similar with those from Myanmar and Malaysia, though genetic distances 0-2.27% were observed. We tentatively regard this divergence as intraspecific variation, and the automatic barcode gap discovery analysis further supports them as a single species.
    Matched MeSH terms: DNA Barcoding, Taxonomic
  7. Lee JW, Ong EBB
    Front Cell Dev Biol, 2020;8:619126.
    PMID: 33511130 DOI: 10.3389/fcell.2020.619126
    Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
    Matched MeSH terms: DNA, Ribosomal
  8. Lin F, Xie Z, Fazhan H, Baylon JC, Yang X, Tan H, et al.
    Mitochondrial DNA B Resour, 2018 Feb 23;3(1):263-264.
    PMID: 33474136 DOI: 10.1080/23802359.2018.1443043
    The complete mitochondrial genome plays an important role in the research on phylogenetic relationship. Here, we reported the first complete mitochondrial genome sequence of Varuna yui Hwang & Takeda, 1986 (Varunidae). The complete mtDNA (15,915 bp in length) consisted of 13 protein-coding genes, 22 tRNAs, two rRNA genes, and a control region. The gene arrangement was identical to those observed in the Varunidae species. The phylogenetic analysis suggested that V. yui had close relationship with other Varunidae species (Helicetient sinensis, Eriocher sinesis, etc.). The newly described genome may facilitate further comparative mitogenomic analysis within Varunidae species.
    Matched MeSH terms: DNA, Mitochondrial
  9. Matthew P, Manjaji-Matsumoto BM, Rodrigues KF
    Mitochondrial DNA B Resour, 2018 Oct 12;3(2):943-944.
    PMID: 33474374 DOI: 10.1080/23802359.2018.1473725
    We report here the complete mitochondrial (mt) genomes of six individuals of Cheilinus undulatus (Napoleon Wrasse), an endangered marine fish species. The six mt DNA sequences had an average size of 17,000 kb and encoded 22 tRNA, two sRNA, 13 highly conserved protein coding genes and a control region. The polymorphic variation (control region) in these six individuals suggests their potential use as a specific marker for phylogeographic conservation. Moreover, the sequence polymorphism within the control region (D-loop) suggests that this locus can be applied for phylogenetic studies.
    Matched MeSH terms: DNA, Mitochondrial
  10. Ameerah Jaafar, Feizel Alsiddiq, Ling, King-Hwa
    MyJurnal
    Gene mutation is one of the etiologies of early-onset epileptic encephalopathy (EOEE), an age-dependent seizure in infants, which leads to brain defects. Previous studies have shown that several genes namely, aristalessrelated homeobox (ARX), cyclindependent kinaselike 5 (CDKL5) and syntaxinbinding protein 1 (STXBP1) are responsible for the pathophysiology of the syndrome. Thestudy involved 20 EOEE patients and 60 control subjects, which aimed toinvestigatethe clinical association of Malaysian EOEE subjects with 13 known pathogenic mutations in the genes of interest. In addition, the entire ARX exonic region was also sequenced for known and novel mutations. PCR specificity and efficiency were optimized using conventional PCR and High Resolution Melting Analysis (HRMA). All cases and approximately 10% of control amplicon samples were purified and subjected to DNA sequencing. All known mutations reported previously were not found in control subjects and Malaysian EOEE patients with 100% confirmation by sequencing results. Sequencing of ARX exonic regionsof patient samplesdid not find any mutation in all exons. The preliminary study indicates that selected known pathogenic mutations of ARX, CDKL5and STXBP1are not associated with EOEE in Malaysian paediatric patients.
    Matched MeSH terms: Sequence Analysis, DNA
  11. Saiful AJ, Mastura M, Zarizal S, Mazurah MI, Shuhaimi M, Ali AM
    J Basic Microbiol, 2008 Aug;48(4):245-51.
    PMID: 18720500 DOI: 10.1002/jobm.200700387
    Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.
    Matched MeSH terms: DNA, Bacterial/genetics; DNA, Bacterial/chemistry; Sequence Analysis, DNA
  12. Rahman RN, Geok LP, Wong CF, Basri M, Salleh AB
    J Basic Microbiol, 2010 Apr;50(2):143-9.
    PMID: 20082370 DOI: 10.1002/jobm.200900133
    A gene encoding an organic solvent-stable protease was amplified from Pseudomonas aeruginosa strain K by polymerase chain reaction using consensus primers based on multiple sequence alignment of alkaline and metalloprotease genes from Pseudomonas species. The gene, which consisted of 1440 bp nucleotides and deduced 479 amino acid residues, was successfully expressed in pGEX-4T-1 expression system in the presence of 1.0 mM IPTG, after an incubation of 6 h at 37 degrees C. Under these conditions, the recombinant strain K protease was, subsequently, released into the periplasm of E. coli BL21 (DE3) with an optimum proteolytic activity detected at 1.0112 U/ml. To date, this is the first reported expression of alkaline protease (aprA) with such remarkable property in Escherichia coli.
    Matched MeSH terms: DNA, Bacterial/genetics; DNA, Bacterial/chemistry; Sequence Analysis, DNA
  13. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
    Matched MeSH terms: DNA, Bacterial/genetics; DNA, Bacterial/chemistry; Sequence Analysis, DNA
  14. Shaminie J, Peh SC, Tan MJ
    Pathology, 2003 Oct;35(5):414-21.
    PMID: 14555386
    AIMS: PCR has been the primary method used for the detection of t(14;18) translocation in formalin-fixed, paraffin-embedded tissues. This technique mainly targets the well-characterised breakpoint regions in chromosomes 14 and 18. FISH is now applicable on paraffin tissue sections and has been suggested to be capable of detecting essentially 100% of t(14;18) translocated cases. In this study, we described the application of both PCR and FISH for the detection of t(14;18) translocation.

    METHODS: Fifty follicular lymphoma cases were retrieved from the files of the Department of Pathology, University of Malaya Medical Centre (UMMC). Nested PCR amplification of MBR/JH and mcr/JH was performed in these cases, and those cases that did not demonstrate the translocation were subjected to FISH analysis.

    RESULTS: Thirty cases (60%) had t(14;18) translocation detected by PCR, 25 (50%) had breakpoint with MBR and five (10%) involved mcr. Twenty cases without detectable t(14;18) translocation by PCR were analysed by FISH. Eleven cases were successfully probed, and four of them showed positive translocation signal.

    CONCLUSIONS: The combination of PCR and FISH analysis on paraffin tissue sections for the detection of t(14;18) translocation increases the sensitivity of detection from 60 to 68%. Problems encountered in our FISH analysis on tissue sections impose certain limitations in using this technique for retrospective screening of large number of samples. Therefore, we suggested the application of PCR as the first screening tool on retrospective archival materials, followed by FISH on those PCR-negative cases.

    Matched MeSH terms: DNA, Neoplasm/analysis; DNA Primers/chemistry
  15. Manivannan M, Jogalekar MP, Kavitha MS, Maran BAV, Gangadaran P
    Exp Biol Med (Maywood), 2021 02;246(3):293-297.
    PMID: 33210552 DOI: 10.1177/1535370220975118
    Coronavirus disease 2019 (COVID-19) pandemic has uprooted our lives like never before since its onset in the late December 2019. The world has seen mounting infections and deaths over the past few months despite the unprecedented measures countries are implementing, such as lockdowns, social distancing, mask-wearing, and banning gatherings in large groups. Interestingly, young individuals seem less likely to be impacted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. While the rate of transmission, symptom presentation, and fatality is lower in children than people from other age groups, they have been disproportionately affected by strict lockdown measures needed to curb viral spread. In this review, we describe the association between patient age and COVID-19, epidemiology of SARS-CoV-2 infection in children, psychological effects associated with lockdowns and school closures, and possible mechanisms underlying lower transmission rate of COVID-19 in children.
    Matched MeSH terms: DNA Viruses
  16. Goh JE, Rahman AY, Hari R, Lim MP, Najimudin N, Yap WS, et al.
    Microbiol Resour Announc, 2020 May 21;9(21).
    PMID: 32439681 DOI: 10.1128/MRA.01485-19
    A type strain of Lactarius deliciosus was obtained from the CBS-KNAW culture collection. The mycelium was cultured using potato dextrose agar, and the extracted genomic DNA was subjected to PacBio genome sequencing. Upon assembly and annotation, the genome size was estimated to be 54 Mbp, with 12,753 genes.
    Matched MeSH terms: DNA
  17. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, et al.
    Front Plant Sci, 2015;6:886.
    PMID: 26635817 DOI: 10.3389/fpls.2015.00886
    Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.
    Matched MeSH terms: DNA Shuffling
  18. Beatson SA, Ben Zakour NL, Totsika M, Forde BM, Watts RE, Mabbett AN, et al.
    Infect Immun, 2015 May;83(5):1749-64.
    PMID: 25667270 DOI: 10.1128/IAI.02810-14
    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
    Matched MeSH terms: DNA, Bacterial/genetics; DNA, Bacterial/chemistry; Sequence Analysis, DNA
  19. Ahmad NA, Mohamed Zulkifli R, Hussin H, Nadri MH
    J Mol Graph Model, 2021 06;105:107872.
    PMID: 33765525 DOI: 10.1016/j.jmgm.2021.107872
    Aptamers are short oligonucleotides that possess high specificity and affinity against their target. Generated via Systematic Evolution of Ligands by Exponential Enrichment, (SELEX) in vitro, they were screened and enriched. This review covering the study utilizing bioinformatics tools to analyze primary sequence, secondary and tertiary structure prediction, as well as docking simulation for various aptamers and their ligand interaction. Literature was pooled from Web of Science (WoS) and Scopus databases until December 18, 2020 using specific search string related to DNA aptamers, in silico, structure prediction, and docking simulation. Out of 330 published articles, 38 articles were assessed in the analysis based on the predefined inclusion and exclusion criteria. It was found that Mfold and RNA Composer web server is the most popular tool in secondary and tertiary structure prediction of DNA aptamers, respectively. Meanwhile, in docking simulation, ZDOCK and AutoDock are preferred to analyze binding interaction in the aptamer-ligand complex. This review reports a brief framework of recent developments of in silico approaches that provide predictive structural information of ssDNA aptamer.
    Matched MeSH terms: DNA, Single-Stranded
  20. Le TH, Humair PF, Blair D, Agatsuma T, Littlewood DT, McManus DP
    Mol Biochem Parasitol, 2001 Sep 28;117(1):61-71.
    PMID: 11551632
    Complete sequences were obtained for the coding portions of the mitochondrial (mt) genomes of Schistosoma mansoni (NMRI strain, Puerto Rico; 14 415 bp), S. japonicum (Anhui strain, China; 14 085 bp) and S. mekongi (Khong Island, Laos; 14 072 bp). Each comprises 36 genes: 12 protein-encoding genes (cox1-3, nad1-6, nad4L, atp6 and cob); two ribosomal RNAs, rrnL (large subunit rRNA or 16S) and rrnS (small subunit rRNA or 12S); as well as 22 transfer RNA (tRNA) genes. The atp8 gene is absent. A large segment (9.6 kb) of the coding region (comprising 14 tRNAs, eight complete and two incomplete protein-encoding genes) for S. malayensis (Baling, Malaysian Peninsula) was also obtained. Each genome also possesses a long non-coding region that is divided into two parts (a small and a large non-coding region, the latter not fully sequenced in any species) by one or more tRNAs. The protein-encoding genes are similar in size, composition and codon usage in all species except for cox1 in S. mansoni (609 aa) and cox2 in S. mekongi (219 aa), both of which are longer than homologues in other species. An unexpected finding in all the Schistosoma species was the presence of a leucine zipper motif in the nad4L gene. The gene order in S. mansoni is strikingly different from that seen in the S. japonicum group and other flatworms. There is a high level of identity (87-94% at both the nucleotide and amino acid levels) for all protein-encoding genes of S. mekongi and S. malayensis. The identity between genes of these two species and those of S. japonicum is less (56-83% for amino acids and 73-79% for nucleotides). The identity between the genes of S. mansoni and the Asian schistosomes is far less (33-66% for amino acids and 54-68% for nucleotides), an observation consistent with the known phylogenetic distance between S. mansoni and the other species.
    Matched MeSH terms: DNA, Mitochondrial/genetics*; DNA, Mitochondrial/chemistry; Sequence Analysis, DNA
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links