Displaying publications 121 - 140 of 273 in total

Abstract:
Sort:
  1. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
  2. Tan KK, Aminuddin BS, Tan GH, Sabarul Afian M, Ng MH, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:43-4.
    PMID: 15468810
    The strategy used to generate tissue-engineered bone construct, in view of future clinical application is presented here. Osteoprogenitor cells from periosteum of consenting scoliosis patients were isolated. Growth factors viz TGF-B2, bFGF and IGF-1 were used in concert to increase cell proliferation during in vitro cell expansion. Porous tricalcium phosphate (TCP)-hydroxyapatite (HA) scaffold was used as the scaffold to form 3D bone construct. We found that the addition of growth factors, greatly increased cell growth by 2 to 7 fold. TCP/HA proved to be the ideal scaffold for cell attachment and proliferation. Hence, this model will be further carried out on animal trial.
  3. Ng MH, Aminuddin BS, Tan KK, Tan GH, Sabarul Afian M, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:41-2.
    PMID: 15468809
    Bone marrow stem cells (BMSC), known for its multipotency to differentiate into various mesenchymal cells such as chodrocyte, osteoblasts, adipocytes, etc, have been actively applied in tissue engineering. BMSC have been successfully isolated from bone marrow aspirate and bone marrow scraping from patients of various ages (13-56 years) with as little as 2ml to 5ml aspirate. BMSC isolated from our laboratory showed the presence of a heterogenous population that showed varying prevalence of surface antigens and the presence of telomerase activity albeit weak. Upon osteogenic induction, alkaline phosphatase activity and mineralization activity were observed.
  4. Mazlyzam AL, Aminuddin BS, Lokman BS, Isa MR, Fuzina H, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:39-40.
    PMID: 15468808
    Our objective is to determine the quality of tissue engineered human skin via immunostaining, RT-PCR and electron microscopy (SEM and TEM). Culture-expanded human keratinocytes and fibroblasts were used to construct bilayer tissue-engineered skin. The in vitro skin construct was cultured for 5 days and implanted on the dorsum of athymic mice for 30 days. Immunostaining of the in vivo skin construct appeared positive for monoclonal mouse anti-human cytokeratin, anti-human involucrin and anti-human collagen type I. RT-PCR analysis revealed loss of the expression for keratin type 1, 10 and 5 and re-expression of keratin type 14, the marker for basal keratinocytes cells in normal skin. SEM showed fibroblasts proliferating in the 5 days in vitro skin. TEM of the in vivo skin construct showed an active fibrocyte cell secreting dense collagen fibrils. We have successfully constructed bilayer tissue engineered human skin that has similar features to normal human skin.
  5. Azmi B, Aminuddin BS, Sharaf I, Samsudin OC, Munirah S, Chua KH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:13-4.
    PMID: 15468795
    Animal serum is commonly used in chondrocytes culture expansion to promote cell proliferation and shorten the time lag before new tissue reconstruction is possible. However, animal serum is not suitable for regeneration of clinical tissue because it has potential risk of viral and prion related disease transmission particularly mad cow disease and foreign protein contamination that can stimulate immune reaction leading to graft rejection. In this context, human serum as homologous supplement has a greater potential as growth promoting agents for human chondrocytes culture.
  6. Munirah S, Aminuddin BS, Chua KH, Fuzina NH, Isa MR, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:9-10.
    PMID: 15468793
    Autologous cells are usually preferred in treating damaged tissue to avoid risks of immunological rejection and transmitting infectious diseases. Since only limited amount of tissue can be obtained without causing morbidity at the donor site, in vitro expansion of isolated cell is essential in order to acquire sufficient number of cells to reconstruct neocartilage. The aim of this study was to examine whether serial expanded chondrocytes can be use to generate neocartilage in vivo.
  7. Badrul AH, Aminuddin BS, Sharaf I, Samsudin OC, Munirah S, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:11-2.
    PMID: 15468794
    Culture media supplemented with animal serum e.g. fetal bovine serum; FBS is commonly used for human culture expansion. However, for clinical application, FBS is restricted as its carry a risk of viral or prion transmission. Engineering autologous cartilage with autologous human serum supplementation is seen as a better solution to reduce the risk of transmitting infectious diseases and immune rejection during cartilage transplantation. The purpose of this study is to establish and compare the effects of 10% autologous human serum (AHS) and 10% FBS on the growth of chondrocytes and the formation of tissue engineered human articular cartilage.
  8. Rabiatul AR, Lokanathan Y, Rohaina CM, Chowdhury SR, Aminuddin BS, Ruszymah BH
    J Biomater Sci Polym Ed, 2015;26(17):1297-311.
    PMID: 26335265 DOI: 10.1080/09205063.2015.1088183
    Scaffold design is an important aspect of in vitro model development. In this study, nanoscaffold surface modification, namely UV radiation and genipin cross-linking to immobilize collagen on the surface of electrospun poly (methyl methacrylate) (PMMA) nanofiber sheet was investigated. Samples were divided into four groups; PMMA nanofibers (PMMA), collagen-coated PMMA nanofibers (PMMACOL), genipin cross-linked collagen-coated PMMA nanofibers (PMMAGEN), and UV-irradiated collagen-coated PMMA nanofibers (PMMAUV). 6 h of UV radiation significantly reduced the hydrophobicity of PMMA nanofibers from (131.88° ± 1.33°) to (110.04° ± 0.27°) (p 
  9. Haghani A, Mehrbod P, Safi N, Aminuddin NA, Bahadoran A, Omar AR, et al.
    J Ethnopharmacol, 2016 Jun 5;185:327-40.
    PMID: 26976767 DOI: 10.1016/j.jep.2016.03.020
    For centuries, Edible Bird Nest (EBN) has been used in treatment of variety of respiratory diseases such as flu and cough as a Chinese natural medicine.
  10. Azali MA, Yean Yean C, Harun A, Aminuddin Baki NN, Ismail N
    J Trop Med, 2016;2016:2060241.
    PMID: 27127522 DOI: 10.1155/2016/2060241
    The presence of pathogenic Leptospira spp. in the environment poses threats to human health. The aim of this study was to detect and characterize Leptospira spp. from environmental samples. A total of 144 samples comprised of 72 soil and 72 water samples were collected from markets and recreational areas in a north-eastern state in Malaysia. Samples were cultured on Ellinghausen and McCullough modified by Johnson and Harris media. Leptospires were positive in 22.9% (n = 33) of the isolates. Based on partial sequences of 16S rRNA, a pathogenic leptospire, Leptospira alstonii (n = 1/33), was identified in 3% of the isolates followed by intermediate leptospire (L. wolffii, n = 1/33, and L. licerasiae, n = 7/33) and nonpathogenic leptospire, L. meyeri (n = 22/33) in 24.2% and 66.7%, respectively. This study demonstrates the presence of a clinically significant pathogenic L. alstonii in the environments which could pose health risks to the occupants and visitors.
  11. Masri AN, Abdul Mutalib MI, Yahya WZN, Aminuddin NF, Leveque JM
    Ultrason Sonochem, 2020 Jan;60:104732.
    PMID: 31499322 DOI: 10.1016/j.ultsonch.2019.104732
    Biodiesel production via esterification/transesterification reactions can be catalyzed by homogenous or heterogeneous catalysts. Development of heterogeneous catalysts for biodiesel production is highly advantageous due to the ease of product purification and of catalyst recyclability. In this current work, a novel acidic [DABCODBS][CF3SO3]2 dicationic ionic liquid (DIL) was used as heterogeneous catalyst to produce biodiesel using oleic acid as model oil. The esterification was conducted under ultrasonic irradiation (20 kHz) using a 14 mm ultrasonic horn transducer operated at various duty cycles. It was observed that the duty cycle, amplitude, methanol to oil molar ratio, catalyst amount and reaction temperature were the major factors that greatly impact the necessary reaction time to lead to a high yield of biodiesel. The reaction conditions were optimized with the aid of Response Surface Methodology (RSM) designed according to the Quadratic model of the Box Behnken method. The optimum conditions were found to be at catalyst amount of 0.64 mol%, methanol to oil ratio of 14.3:1, temperature of 59 °C, reaction time of 83 min and amplitude of 60% in continuous mode. The results showed that the oleic acid was successfully converted into esters with conversion value of 93.20% together with significant reduction of reaction time from 7 h (using mechanical stirring) to 83 min (using ultrasonication). The results also showed that the acidic DIL catalyst we designed purposely was efficient to catalyze the ultrasonic-assisted esterification yielding high conversion of oleic acid to methyl oleate on short times. The DIL was also recycled and reused for at least five times without significant reduction in performance. Overall, the procedureoffersadvantages including short reaction time, good yield, operational simplicity and environmentally benign characteristics.
  12. Grace Ng YH, Aminuddin AA, Tan TL, Kuppusamy R, Tagore S, Yeo GSH
    Arch Gynecol Obstet, 2021 May 11.
    PMID: 33973051 DOI: 10.1007/s00404-021-06090-y
    OBJECTIVE: To evaluate the safety in the first 12 h, efficacy and maternal satisfaction of a double balloon catheter (DBC) with vaginal prostaglandin (PGE) for induction of labour (IOL).

    METHODS: We conducted a multicentre randomised controlled study of 420 patients from 1st January 2016 to 31st December 2017 to evaluate the use of DBC in IOL in an Asian population looking at the adverse effects in the first 12 h after insertion. Women were assigned randomly to cervical ripening with either a DBC or a prostaglandin pessary. The adverse events in the 12 h after DBC or first prostaglandin inserted, the efficacy of a DBC to a prostaglandin in labour induction and maternal satisfaction were evaluated.

    RESULTS: There were significantly less women with uterine hyperstimulation in the DBC (2 vs 24, p ≤ 0.0001) compared to the prostaglandin group. There were no women with uterine hyperstimulation and non-reassuring foetal status in the DBC while there were 5 women with uterine hyperstimulation and foetal distress in the prostaglandin group. Use of entonox was significantly less in the DBC group (p = 0.009). There were no significant differences in both groups in caesarean section, vaginal deliveries and time to delivery, although significant less time was needed to achieve cervical os dilation more than 4 cm in the DBC group (p ≤ 0.0001). Neonatal birth outcomes were similar. Women's pain scores were similar for both methods. 80.1% of women allocated the DBC and 76.8% of women allocated the PGE were keen to recommend their method of induction.

    CONCLUSION: Double balloon catheter remains a good alternative method for inducing women in view of a good safety profile with low risk of hyperstimulation and high maternal satisfaction.

    CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02620215.

  13. Muhamad SA, Ugusman A, Kumar J, Skiba D, Hamid AA, Aminuddin A
    Front Physiol, 2021;12:665064.
    PMID: 34012410 DOI: 10.3389/fphys.2021.665064
    It has been a year since the coronavirus disease 2019 (COVID-19) was declared pandemic and wreak havoc worldwide. Despite meticulous research has been done in this period, there are still much to be learn from this novel coronavirus. Globally, observational studies have seen that majority of the patients with COVID-19 have preexisting hypertension. This raises the question about the possible relationship between COVID-19 and hypertension. This review summarizes the current understanding of the link between hypertension and COVID-19 and its underlying mechanisms.
  14. Krishnan S, Abd Ghani N, Aminuddin NF, Quraishi KS, Razafindramangarafara BL, Baup S, et al.
    Ultrason Sonochem, 2021 Jun;74:105576.
    PMID: 33975186 DOI: 10.1016/j.ultsonch.2021.105576
    This study investigates the potential of using small amounts of ionic liquids (IL) to enhance ultrasound-assisted extraction of lipids content from green microalgae. Three imidazolium-based ILs (butyl, octyl and dodecyl), each of them with two anions (bromide and acetate) were tested as additives. Viscosity and surface tension of the ILs aqueous mixtures were analyzed to determine the influence of ILs' anions and alkyl chain length, whereas KI dosimetry experiments were used as an indicator of radicals formation. A key finding suggests that the small addition of ILs improves the ultrasonication either by enhancing the viscosity and reducing the water surface tension, leading to a more powerful acoustic cavitation process or by increasing HO° production likely to oxidize the microalgae cells membranes, and consequently disrupting them on a more efficient manner. KI dosimetry also revealed that long ILs alkyl chain is detrimental. This experimental observation is confirmed thus strengthened as the yield of extracted lipids from green microalgae has shown an incremental trend when the IL concentration also increased. These hypotheses are currently under investigation to spot detailed impact of ILs on cavitation process.
  15. Md Salleh MFRR, Aminuddin A, Hamid AA, Salamt N, Japar Sidik FZ, Ugusman A
    Front Pharmacol, 2021;12:667102.
    PMID: 34194328 DOI: 10.3389/fphar.2021.667102
    Exposure to cigarette smoke is an important risk factor for cardiovascular diseases. Nicotine is an addictive compound in cigarette smoke that triggers oxidative stress, which leads to vascular dysfunction. Piper sarmentosum Roxb. is a herb with antioxidant and vascular protective effects. This study evaluated the potential protective effect of the aqueous extract of P. sarmentosum leaf (AEPS) on vascular dysfunction in rats induced with prolonged nicotine administration. A total of 22 male Sprague-Dawley rats were divided into control (normal saline, oral gavage [p.o.]), nicotine (0.8 mg/kg/day nicotine, intraperitoneally [i.p.]), and nicotine + AEPS groups (250 mg/kg/day AEPS, p.o. + 0.8 mg/kg/day nicotine, i.p.). Treatment was given for 21 days. Thoracic aortae were harvested from the rats for the measurement of vasorelaxation, vascular nitric oxide (NO) level, and antioxidant level and the assessment of vascular remodeling. Rats treated with AEPS had improved vasorelaxation to endothelium-dependent vasodilator, acetylcholine (ACh), compared with the nicotine-induced rats (p < 0.05). The presence of endothelium increased the maximum relaxation of aortic rings in response to ACh. Compared with the nicotine group, AEPS enhanced vascular NO level (p < 0.001) and increased antioxidant levels as measured by superoxide dismutase activity (p < 0.05), catalase activity (p < 0.01), and reduced glutathione level (p < 0.05). No remarkable changes in aortic histomorphometry were detected. In conclusion, P. sarmentosum attenuates vascular endothelial dysfunction in nicotine-induced rats by improving vasorelaxation and enhancing vascular NO and antioxidant levels.
  16. Omar NO, Ahmad RA, Mohd Shah MS, Aminuddin AA, Chellappan KC
    Med J Malaysia, 2021 05;76(3):375-381.
    PMID: 34031337
    INTRODUCTION: Inflammation plays a central role in the pathogenesis of cardiovascular events. The lack of exercise among Malaysians and the increasing cardiovascular diseases among young men are of concern. The aim of this study was to evaluate the reducing of inflammation by measuring C-Reactive protein (CRP), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α).

    MATERIALS AND METHODS: A total of 70 young men (20 - 40 years) who were sedentary, achieving less than 5,000 steps/day in casual walking with 2 or more cardiovascular risk factors were recruited in Institute of Vocational Skills for Youth (IKBN Hulu Langat). Subjects were randomly assigned to a control group (CG) (n=34; no change in walking) and pedometer group (PG) (n=36; minimum target: 8,000 steps/day). All parameter was measured at baseline, at 6 weeks and after 12 weeks.

    RESULTS: At post intervention, the CG step counts were similar (4983 ± 366vs 5697 ± 407steps/day). The PG significant increased step count from 4996 ± 805 to 10,128 ±511 steps/day (p<0.001). The PG showed significant improvement in anthropometric variables and lipid (time and group effect p<0.001). After intervention, CRP, IL-6 and TNF- α were significantly reduced for time and group effect (p<0.001). However, no changes were seen in CG.

    CONCLUSION: The pedometer-based walking programme improved health status in terms of improving inflammation and arterial stiffness.

  17. Zamzuri Z, Goh KL, Aminuddin CA, Mohamed Azril MA, Shukrimi A
    MyJurnal
    A 15-year–old Malay male with congenital insensitivity to pain presented with recurrent septic arthritis of the left knee complicated by osteomylitis. Repeated arthrotomy and wound debridement was done, however, the condition was not resolved. Amputation was suggested as the best method of treatment to eradicate the infection.
  18. Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BHI, Chowdhury SR
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:163-171.
    PMID: 27524008 DOI: 10.1016/j.msec.2016.05.109
    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications.
  19. Kong KW, Abdul Aziz A, Razali N, Aminuddin N, Mat Junit S
    PeerJ, 2016;4:e2379.
    PMID: 27635343 DOI: 10.7717/peerj.2379
    Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE) has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking.
  20. Ude CC, Chen HC, Norhamdan MY, Azizi BM, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Sep;18(3):355-367.
    PMID: 28667462 DOI: 10.1007/s10561-017-9638-1
    In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control. ADSCs and BMSCs proved multipotency by tri-lineage differentiations. ADSC has significantly higher growth kinetics compare to Chondrocyte only p ≤ 0.05. Using TGF-β3 alone, BMSC revealed higher expressions for hyaline cartilage genes compare to ADSCs. Chondrocyte has significantly higher early chondrogenic markers expression to ADSCs and BMSCs, while BMSCs was only higher to ADSC at chondroadherin, p ≤ 0.0001. On mature chondrogenic markers, chondrocytes were significantly higher to ADSCs and BMSCs for aggrecan, collagen IX, sry (sex determining region y)-box9, collagen II and fibromodullin; and only to ADSC for collagen XI. BMSC was higher to ADSC for aggrecan and collagen IX, p ≤ 0.0001. The combination of TGF-β3 + BMP-6 revealed increased gene expressions on both BMSCs and ADSCs for early and mature chondrogenic markers, but no significance difference. For dedifferentiation markers, ADSC was significantly higher to chondrocyte for collagen I. Glycosaminoglycan evaluations with both formulas revealed that chondrocytes were significantly higher to ADSCs and BMSCs, but none was significant to each other, p ≤ 0.0001. Combination of 10 ng TGF-β3 with 10 ng of BMP-6 enhanced chondrogenic potentials of BMSCs and ADSCs compare to TGF-β3 alone. This could be the ideal cocktail for either cell's chondrogenic induction.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links