Displaying publications 121 - 140 of 149 in total

Abstract:
Sort:
  1. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, et al.
    Cell Mol Life Sci, 2021 Jan;78(2):497-512.
    PMID: 32748155 DOI: 10.1007/s00018-020-03579-8
    YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
  2. Heng BC, Bai Y, Li X, Meng Y, Lu Y, Zhang X, et al.
    Animal Model Exp Med, 2023 Apr;6(2):120-130.
    PMID: 36856186 DOI: 10.1002/ame2.12300
    Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.
  3. Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, et al.
    Adv Sci (Weinh), 2023 Jan;10(2):e2204502.
    PMID: 36453574 DOI: 10.1002/advs.202204502
    Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
  4. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, et al.
    Front Cell Dev Biol, 2020;8:735.
    PMID: 32850847 DOI: 10.3389/fcell.2020.00735
    The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
  5. He Z, Li X, Yang M, Wang X, Zhong C, Duke NC, et al.
    Natl Sci Rev, 2019 Mar;6(2):275-288.
    PMID: 31258952 DOI: 10.1093/nsr/nwy078
    Allopatric speciation requiring an unbroken period of geographical isolation has been the standard model of neo-Darwinism. While doubts have been repeatedly raised, strict allopatry without any gene flow remains a plausible mechanism in most cases. To rigorously reject strict allopatry, genomic sequences superimposed on the geological records of a well-delineated geographical barrier are necessary. The Strait of Malacca, narrowly connecting the Pacific and Indian Ocean coasts, serves at different times either as a geographical barrier or a conduit of gene flow for coastal/marine species. We surveyed 1700 plants from 29 populations of 5 common mangrove species by large-scale DNA sequencing and added several whole-genome assemblies. Speciation between the two oceans is driven by cycles of isolation and gene flow due to the fluctuations in sea level leading to the opening/closing of the Strait to ocean currents. Because the time required for speciation in mangroves is longer than the isolation phases, speciation in these mangroves has proceeded through many cycles of mixing-isolation-mixing, or MIM, cycles. the MIM mechanism, by relaxing the condition of no gene flow, can promote speciation in many more geographical features than strict allopatry can. Finally, the MIM mechanism of speciation is also efficient, potentially yielding m n (m > 1) species ather n cycles.

    SIGNIFICANCE STATEMENT: Mechanisms of species formation have always been a conundrum. Speciation between populations that are fully geographically isolated, or allopatric speciation, has been the standard solution in the last 50 years. Complete geographical isolation with no possibility of gene flow, however, is often untenable and is inefficient in generating the enormous biodiversity. By studying mangroves on the Indo-Malayan coasts, a global hotspot of coastal biodiversity, we were able to combine genomic data with geographical records on the Indo-Pacific Barrier that separates Pacific and Indian Ocean coasts. We discovered a novel mechanism of speciation that we call mixingisolation-mixing (MIM) cycles. By permitting intermittent gene flow during speciation,MIMcycles can potentially generate species at an exponential rate, thus combining speciation and biodiversity in a unified framework.

  6. Harreld JH, Mohammed N, Goldsberry G, Li X, Li Y, Boop F, et al.
    AJNR Am J Neuroradiol, 2015 May;36(5):993-9.
    PMID: 25614472 DOI: 10.3174/ajnr.A4221
    Postoperative intraspinal subdural collections in children after posterior fossa tumor resection may temporarily hinder metastasis detection by MR imaging or CSF analysis, potentially impacting therapy. We investigated the incidence, imaging and clinical features, predisposing factors, and time course of these collections after posterior fossa tumor resection.
  7. Hantoko D, Li X, Pariatamby A, Yoshikawa K, Horttanainen M, Yan M
    J Environ Manage, 2021 May 15;286:112140.
    PMID: 33652254 DOI: 10.1016/j.jenvman.2021.112140
    The COVID-19 pandemic has imposed a global emergency and also has raised issues with waste management practices. This study emphasized the challenges of increased waste disposal during the COVID-19 crisis and its response practices. Data obtained from the scientific research papers, publications from the governments and multilateral organizations, and media reports were used to quantify the effect of the pandemic towards waste generation. A huge increase in the amount of used personal protective equipments (facemasks, gloves, and other protective stuffs) and wide distribution of infectious wastes from hospitals, health care facilities, and quarantined households was found. The amount of food and plastic waste also increased during the pandemic. These factors caused waste treatment facilities to be overwhelmed, forcing emergency treatment and disposals (e.g., co-disposal in a municipal solid waste incinerator, cement kilns, industrial furnaces, and deep burial) to ramp up processing capacity. This paper discussed the ways the operation of those facilities must be improved to cope with the challenge of handling medical waste, as well as working around the restrictions imposed due to COVID-19. The study also highlights the need for short, mid, and longer-term responses towards waste management during the pandemic. Furthermore, the practices discussed in this paper may provide an option for alternative approaches and development of sustainable strategies for mitigating similar pandemics in the future.
  8. Guo K, Zhang X, Bai S, Minhat HS, Nazan AINM, Feng J, et al.
    PLoS One, 2021;16(7):e0253891.
    PMID: 34297731 DOI: 10.1371/journal.pone.0253891
    Following the 2019 coronavirus disease (COVID-19) outbreak in China, undergraduate students may experience psychological changes. During emergency circumstances, social support is an important factor influencing the mental health condition among undergraduate students in Shaanxi province. This study aims to find the factors associated with mental health symptoms of depression, anxiety, and stress among undergraduate students in Shaanxi province during the COVID-19 pandemic in China. A cross-sectional study was conducted from Feb 23 to Mar 7, 2020. A total of 1278 undergraduate students from the universities located in Shaanxi province participated in this study. The mental health symptoms were measured by 12-item Perceived Social Support Scale (PSSS) and Depression Anxiety Stress Scale (DASS-21) instruments. This survey showed that females receive more social support compared to males (t = -5.046, P<0.001); males have higher-level depression symptoms (t = 5.624, P<0.001); males have higher-level anxiety symptoms (t = 6.332, P<0.001), males have higher-level stress symptoms (t = 5.58, P<0.001). This study also found participants who have low social support was negatively correlated with mental health symptoms. In Conclusion, Males and low social support were associated with having the higher level of depression, anxiety, and stress symptoms among undergraduate students in Shaanxi province during the COVID-19 pandemic in China. Therefore, it is suggested that people should supply more social support for undergraduate students in Shaanxi province during COVID-19 pandemic.
  9. Guan L, Zhu S, Han Y, Yang C, Liu Y, Qiao L, et al.
    Biotechnol Lett, 2018 Mar;40(3):501-508.
    PMID: 29249062 DOI: 10.1007/s10529-017-2491-2
    OBJECTIVE: To study the effects of CTNNB1 gene knockout by CRISPR-Cas9 technology on cell adhesion, proliferation, apoptosis, and Wnt/β-catenin signaling pathway.

    RESULTS: CTNNB1 gene of HEK 293T cells was knocked out by CRISPR-Cas9. This was confirmed by sequencing and western blotting. Methylthiazolyl-tetrazolium bromide assays indicated that deletion of β-catenin significantly weakened adhesion ability and inhibited proliferation rate (P 

  10. Gu C, Liang Y, Li J, Shao H, Jiang Y, Zhou X, et al.
    iScience, 2021 Dec 17;24(12):103439.
    PMID: 34988389 DOI: 10.1016/j.isci.2021.103439
    The highest plateau on Earth, Qinghai-Tibet Plateau, contains thousands of lakes with broad salinity and diverse and unique microbial communities. However, little is known about their co-occurring viruses. Herein, we identify 4,560 viral Operational Taxonomic Units (vOTUs) from six viromes of three saline lakes on Qinghai-Tibet Plateau, with less than 1% that could be classified. Most of the predicted vOTUs were associated with the dominant bacterial and archaeal phyla. Virus-encoded auxiliary metabolic genes suggest that viruses influence microbial metabolisms of carbon, nitrogen, sulfur, and lipid; the antibiotic resistance mediation; and their salinity adaption. The six viromes clustered together with the ice core viromes and bathypelagic ocean viromes and might represent a new viral habitat. This study has revealed the unique characteristics and potential ecological roles of DNA viromes in the lakes of the highest plateau and established a foundation for the recognition of the viral roles in plateau lake ecosystems.
  11. Gao X, Liu H, Li X, Fu S, Cao L, Shao N, et al.
    Vector Borne Zoonotic Dis, 2019 Jan;19(1):35-44.
    PMID: 30207876 DOI: 10.1089/vbz.2018.2291
    Japanese encephalitis virus (JEV) is a representative virus of the JEV serogroup in genus Flavivirus, family Flaviviridae. JEV is a mosquito-borne virus that causes Japanese encephalitis (JE), one of the most severe viral encephalitis diseases in the world. JEV is divided into five genotypes (G1-G5), and each genotype has its own distribution pattern. However, the distribution of different JEV genotypes has changed markedly in recent years. JEV G1 has replaced G3 as the dominant genotype in the traditional epidemic areas in Asia, while G3 has spread from Asia to Europe and Africa and caused domestic JE cases in Africa. G2 and G5, which were endemic in Malaysia, exhibited great geographical changes as well. G2 migrated southward and led to prevalence of JE in Australia, while G5 emerged in China and South Korea after decades of silence. Along with these changes, JE occurred in some non-traditional epidemic regions as an emerging infectious disease. The regional changes in JEV pose a great threat to human health, leading to huge disease burdens. Therefore, it is of great importance to strengthen the monitoring of JEV as well as virus genotypes, especially in non-traditional epidemic areas.
  12. Fu X, Song X, Li X, Wong KK, Li J, Zhang F, et al.
    PMID: 28191021 DOI: 10.1155/2017/4365715
    Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources.
  13. Du P, Liu X, Zhong G, Zhou Z, Thomes MW, Lee CW, et al.
    PMID: 32023897 DOI: 10.3390/ijerph17030889
    Southeast Asian countries including Malaysia play a major role in global drug trade and abuse. Use of amphetamine-type stimulants has increased in the past decade in Malaysia. This study aimed to apply wastewater-based epidemiology for the first time in Kuala Lumpur, Malaysia, to estimate the consumption of common illicit drugs in urban population. Influent wastewater samples were collected from two wastewater treatment plants in Kuala Lumpur in the summer of 2017. Concentrations of twenty-four drug biomarkers were analyzed for estimating drug consumption. Fourteen drug residues were detected with concentrations of up to 1640 ng/L. Among the monitored illicit drugs, 3,4-methylenedioxy-methamphetamine (MDMA) or ecstasy had the highest estimated per capita consumptions. Consumption and dose of amphetamine-type stimulants (methamphetamine and MDMA) were both an order of magnitude higher than those of opioids (heroin and codeine, methadone and tramadol). Amphetamine-type stimulants were the most prevalent drugs, replacing opioids in the drug market. The prevalence trend measured by wastewater-based epidemiology data reflected the shift to amphetamine-type stimulants as reported by the Association of Southeast Asian Nations Narcotics Cooperation Center. Most of the undetected drug residues were new psychoactive substances (NPSs), suggesting a low prevalence of NPSs in the drug market.
  14. Di J, Xiong Y, Li D, Li X, Wang W, Cheng Y, et al.
    Malays J Pathol, 2022 Dec;44(3):509-516.
    PMID: 36591718
    Hyalinising clear cell carcinoma (HCCC) of the lung is an extremely rare tumour that is just recently recognised as one of the salivary gland-type tumours (SGTT) in the latest WHO classification of thoracic tumours. Eleven cases have been reported in English literature since Joaquín et al. reported the first case. Given the very limited number of cases, the clinical and histological features of pulmonary HCCC are equivocal. Herein, we present two cases of pulmonary HCCC. The patients were a 66-year-old man and a 48-year-old woman. The mass was located on the right main bronchus and right middle lobar bronchus separately. One was 2 cm and the other was 3.3 cm in the greatest dimension. The tumours were comprised of small monomorphic cells with clear or eosinophilic cytoplasm and infiltrated in a hyalinising stroma arranged in nests, cords, sheets and trabeculae. Their morphology resembled their head and neck counterparts. Immunohistochemically, the tumour cells were positive for AE1/AE3, P63, while negative for TTF1, Calponin, S-100, HMB45 and PAX8. Ki-67 labeling ranges from 3% to 10%. Fluorescence in situ hybridisation (FISH) demonstrated EWSR1 rearrangement and Next-generation sequencing (NGS) demonstrated EWSR1- ATF1 (exon 11: exon 3) fusion in case one and EWSR1- ATF1 (exon 2: exon 12) fusion in case two. This is the first time to report the EWSR1-ATF1fusion point other than exon 11: exon 3 in pulmonary HCCC. Case one recurred two years after local resection but didn't metastasise during follow-up 36 months. Case two is alive without disease after lobectomy during follow-up 14 months.
  15. Cui Y, Hada K, Kawashima T, Kino M, Lin W, Mizuno Y, et al.
    Nature, 2023 Sep;621(7980):711-715.
    PMID: 37758892 DOI: 10.1038/s41586-023-06479-6
    The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole1-4. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from general relativity5. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an 8- to 10-year quasi-periodicity3. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years for the variation in the position angle of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.
  16. Chu C, Lutz JA, Král K, Vrška T, Yin X, Myers JA, et al.
    Ecol Lett, 2019 Feb;22(2):245-255.
    PMID: 30548766 DOI: 10.1111/ele.13175
    Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.
  17. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al.
    Lab Chip, 2016 Feb 7;16(3):611-21.
    PMID: 26759062 DOI: 10.1039/c5lc01388g
    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
  18. Cheung CM, Li X, Cheng CY, Zheng Y, Mitchell P, Wang JJ, et al.
    Ophthalmology, 2014 Aug;121(8):1598-603.
    PMID: 24661862 DOI: 10.1016/j.ophtha.2014.02.004
    To describe the prevalence and risk factors for age-related macular degeneration (AMD) in a multiethnic Asian cohort of Chinese, Malay, and Indian persons.
  19. Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH, Li X
    Cell Death Dis, 2023 Jul 24;14(7):460.
    PMID: 37488128 DOI: 10.1038/s41419-023-05930-w
    Ferroptosis is a recently discovered essential type of cell death that is mainly characterized by iron overload and lipid peroxidation. Emerging evidence suggests that ferroptosis is a double-edged sword in human cancer. However, the precise underlying molecular mechanisms and their differential roles in tumorigenesis are unclear. Therefore, in this review, we summarize and briefly present the key pathways of ferroptosis, paying special attention to the regulation of ferroptosis as well as its dual role as an oncogenic and as a tumor suppressor event in various human cancers. Moreover, multiple pharmacological ferroptosis activators are summarized, and the prospect of targeting ferroptosis in cancer therapy is further elucidated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links