PURPOSE: To investigate the utility of diffusion tensor imaging (DTI) in determining the microstructural integrity of sciatic and peroneal nerves and its correlation with the MRI grading of muscle atrophy severity and clinical function in CMT as determined by the CMT neuropathy score (CMTNS).
STUDY TYPE: Prospective case-control.
SUBJECTS: Nine CMT patients and nine age-matched controls.
FIELD STRENGTH/SEQUENCE: 3 T T1 -weighted in-/out-of phase spoiled gradient recalled echo (SPGR) and DTI sequences.
ASSESSMENT: Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) values for sciatic and peroneal nerves were obtained from DTI. Muscle atrophy was graded according to the Goutallier classification using in-/out-of phase SPGRs. DTI parameters and muscle atrophy grades were compared between CMT and controls, and the relationship between DTI parameters, muscle atrophy grades, and CMTNS were assessed.
STATISTICAL TESTS: The Wilcoxon Signed Ranks test was used to compare DTI parameters between CMT and controls. The relationship between DTI parameters, muscle atrophy grades, and CMTNS were analyzed using the Spearman correlation. Receiver operating characteristic (ROC) analyses of DTI parameters that can differentiate CMT from healthy controls were done.
RESULTS: There was a significant reduction in FA and increase in RD of both nerves (P
METHODS: Sixteen computed tomography scan of SC patients (8 months-6 years old) were imported to Materialise Interactive Medical Image Control System (MIMICS) and Materialise 3-matics software. Three-dimensional (3D) OC models were fabricated, and linear measurements were obtained. Mathematical formulas were used for calculation of OC volume and surface area from the 3D model. The same measurements were obtained from the software and used as ground truth. Data normality was investigated before statistical analyses were performed. Wilcoxon test was used to validate differences of OC volume and surface area between 3D model and software.
RESULTS: The mean values for OC surface area for 3D model and MIMICS software were 103.19 mm2 and 31.27 mm2, respectively, whereas the mean for OC volume for 3D model and MIMICS software were 184.37 mm2 and 147.07 mm2, respectively. Significant difference was found between OC volume (P = 0.0681) and surface area (P = 0.0002) between 3D model and software.
CONCLUSION: Optic canal in SC is not a perfect conical frustum thus making 3D model measurement and mathematical formula for surface area and volume estimation not ideal. Computer software remains the best modality to gauge dimensional parameter and is useful to elucidates the relationship of OC and eye function as well as aiding intervention in SC patients.
DESIGN: Parallel-group randomised controlled trial with a 1:1 allocation ratio.
SETTING: Two regional tertiary neonatal intensive care units.
PATIENTS: 150 preterm infants less than 35 weeks gestation with birth weight between 1.0 and 1.5 kg were recruited.
INTERVENTIONS: Infants were enrolled to either 2-hourly or 3-hourly interval feeding after randomisation. Blinding was not possible due to the nature of the intervention.
MAIN OUTCOME MEASURES: The primary outcome was time to achieve full enteral feeding (≥100 mL/kg/day). Secondary outcomes include time to regain birth weight, episode of feeding intolerance, peak serum bilirubin levels, duration of phototherapy, episode of necrotising enterocolitis, nosocomial sepsis and gastro-oesophageal reflux.
RESULTS: 72 infants were available for primary outcome analysis in each group as three were excluded due to death-three deaths in each group. The mean time to full enteral feeding was 11.3 days in the 3-hourly group and 10.2 days in the 2-hourly group (mean difference 1.1 days; 95% CI -0.4 to 2.5; p=0.14). The mean time to regain birth weight was shorter in 3-hourly group (12.9 vs 14.8 days, p=0.04). Other subgroup analyses did not reveal additional significant results. No difference in adverse events was found between the groups.
CONCLUSION: 3-hourly feeding was comparable with 2-hourly feeding to achieve full enteral feeding without any evidence of increased adverse events.
TRIAL REGISTRATION NUMBER: ACTRN12611000676910, pre-result.
MATERIALS AND METHODS: We analyzed 46 histologically proven glioma (WHO grades II-IV) patients using standard 3T magnetic resonance imaging brain tumor protocol and IOP sequence. Lipid fraction was derived from the IOP sequence signal-loss ratio. The lipid fraction of solid nonenhancing region of glioma was analyzed, using a three-group analysis approach based on volume under surface of receiver-operating characteristics to stratify the prognostic factors into three groups of low, medium, and high lipid fraction. The survival outcome was evaluated, using Kaplan-Meier survival analysis and Cox regression model.
RESULTS: Significant differences were seen between the three groups (low, medium, and high lipid fraction groups) stratified by the optimal cut-off point for overall survival (OS) (p ≤ 0.01) and time to progression (p ≤ 0.01) for solid nonenhancing region. The group with high lipid fraction had five times higher risk of poor survival and earlier time to progression compared to the low lipid fraction group. The OS plot stratified by lipid fraction also had a strong correlation with OS plot stratified by WHO grade (R = 0.61, p < 0.01), implying association to underlying histopathological changes.
CONCLUSION: The lipid fraction of solid nonenhancing region showed potential for prognostication of glioma. This method will be a useful adjunct in imaging protocol for treatment stratification and as a prognostic tool in glioma patients.