Displaying publications 121 - 140 of 318 in total

Abstract:
Sort:
  1. Abbasi MA, Irshad M, Aziz-Ur-Rehman -, Siddiqui SZ, Nazir M, Ali Shah SA, et al.
    Pak J Pharm Sci, 2020 Sep;33(5):2161-2170.
    PMID: 33824125
    In the presented work, 2,3-dihydro-1,4-benzodioxin-6-amine (1) was reacted with 4-chlorobenzenesulfonyl chloride (2) in presence of aqueous basic aqueous medium to obtain 4-chloro-N-(2,3-dihydro-1,4-benzodioxin-6-yl)benzenesulfonamide (3). In parallel, various un/substituted anilines (4a-l) were treated with bromoacetyl bromide (5) in basified aqueous medium to obtain corresponding 2-bromo-N-(un/substituted)phenylacetamides (6a-l) as electrophiles. Then the compound 3 was finally reacted with these electrophiles, 6a-l, in dimethylformamide (DMF) as solvent and lithium hydride as base and activator to synthesize a variety of 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(un/substituted)phenylacetamides (7a-l). The synthesized compounds were corroborated by IR, 1H-NMR and EI-MS spectral data for structural confirmations. These molecules were then evaluated for their antimicrobial and antifungal activities along with their %age hemolytic activity. Some compounds were found to have suitable antibacterial and antifungal potential, especially the compound 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(3,5-dimethylphenyl)acetamide (7l) exhibited good antimicrobial potential with low value of % hemolytic activity.
  2. Rahman MB, Salam R, Islam ARMT, Tasnuva A, Haque U, Shahid S, et al.
    Theor Appl Climatol, 2021;146(1-2):125-138.
    PMID: 34334853 DOI: 10.1007/s00704-021-03705-x
    Climate change-derived extreme heat phenomena are one of the major concerns across the globe, including Bangladesh. The appraisal of historical spatiotemporal changes and possible future changes in heat index (HI) is essential for developing heat stress mitigation strategies. However, the climate-health nexus studies in Bangladesh are very limited. This study was intended to appraise the historical and projected changes in HI in Bangladesh. The HI was computed from daily dry bulb temperature and relative humidity. The modified Mann-Kendal (MMK) test and linear regression were used to detect trends in HI for the observed period (1985-2015). The future change in HI was projected for the mid-century (2041-2070) for three Representative Concentration Pathway (RCP) scenarios, RCP 2.6, 4.5, and 8.5 using the Canadian Earth System Model Second Generation (CanESM2). The results revealed a monotonic rise in the HI and extreme caution conditions, especially in the humid summer season for most parts of Bangladesh for the observed period (1985-2015). Future projections revealed a continuous rise in HI in the forthcoming period (2041-2070). A higher and remarkable increase in the HI was projected in the northern, northeastern, and south-central regions. Among the three scenarios, the RCP 8.5 showed a higher projection of HI both in hot and humid summer compared to the other scenarios. Therefore, Bangladesh should take region-specific adaptation strategies to mitigate the impacts of HI.

    Supplementary Information: The online version contains supplementary material available at 10.1007/s00704-021-03705-x.

  3. Shahid N, Siddique MI, Razzaq Z, Katas H, Waqas MK, Rahman KU
    Drug Dev Ind Pharm, 2018 Dec;44(12):2061-2070.
    PMID: 30081679 DOI: 10.1080/03639045.2018.1509081
    OBJECTIVE: This study was designed to optimize and develop matrix type transdermal drug delivery system (TDDS) containing tizanidine hydrochloride (TZH) using different polymers by solvent evaporation method.

    SIGNIFICANCE: A strong need exists for the development of transdermal patch having improved bioavailability at the site of action with fewer side effects at off-target organs.

    METHODS: The patches were physically characterized by texture analysis (color, flexibility, smoothness, transparency, and homogeneity), in vitro dissolution test and FTIR analysis. Furthermore, functional properties essential for TDDS, in vitro percentage of moisture content, percentage of water uptake, in vitro permeation by following different kinetic models, in vivo drug content estimation and skin irritation were determined using rabbit skin.

    RESULTS: The optimized patches were soft, of uniform texture and thickness as well as pliable in nature. Novel transdermal patch showed ideal characteristics in terms of moisture content and water uptake. FTIR analysis confirmed no interaction between TZH and cellulose acetate phthalate (CAP). The patch showed sustained release of the drug which increased the availability of short acting TZH at the site of action. The patch also showed its biocompatibility to the in vivo model of rabbit skin.

    CONCLUSIONS: The results demonstrated that topically applied transdermal patch will be a potential medicated sustain release patch for muscle pain which will improve patient compliance.

  4. Shahid M, Azfaralariff A, Zubair M, Abdulkareem Najm A, Khalili N, Law D, et al.
    Gene, 2022 Feb 20;812:146104.
    PMID: 34864095 DOI: 10.1016/j.gene.2021.146104
    Among the 22 Fanconi anemia (FA) reported genes, 90% of mutational spectra were found in three genes, namely FANCA (64%), FANCC (12%) and FANCG (8%). Therefore, this study aimed to identify the high-risk deleterious variants in three selected genes (FANCA, FANCC, and FANCG) through various computational approaches. The missense variant datasets retrieved from the UCSC genome browser were analyzed for their pathogenicity, stability, and phylogenetic conservancy. A total of 23 alterations, of which 16 in FANCA, 6 in FANCC and one variant in FANCG, were found to be highly deleterious. The native and mutant structures were generated, which demonstrated a profound impact on the respective proteins. Besides, their pathway analysis predicted many other pathways in addition to the Fanconi anemia pathway, homologous recombination, and mismatch repair pathways. Hence, this is the first comprehensive study that can be useful for understanding the genetic signatures in the development of FA.
  5. Salehie O, Ismail TB, Shahid S, Sammen SS, Malik A, Wang X
    PMID: 35075345 DOI: 10.1007/s00477-022-02172-8
    Assessment of the thermal bioclimatic environmental changes is important to understand ongoing climate change implications on agriculture, ecology, and human health. This is particularly important for the climatologically diverse transboundary Amy Darya River basin, a major source of water and livelihood for millions in Central Asia. However, the absence of longer period observed temperature data is a major obstacle for such analysis. This study employed a novel approach by integrating compromise programming and multicriteria group decision-making methods to evaluate the efficiency of four global gridded temperature datasets based on observation data at 44 stations. The performance of the proposed method was evaluated by comparing the results obtained using symmetrical uncertainty, a machine learning similarity assessment method. The most reliable gridded data was used to assess the spatial distribution of global warming-induced unidirectional trends in thermal bioclimatic indicators (TBI) using a modified Mann-Kendall test. Ranking of the products revealed Climate Prediction Center (CPC) temperature as most efficient in reconstruction observed temperature, followed by TerraClimate and Climate Research Unit. The ranking of the product was consistent with that obtained using SU. Assessment of TBI trends using CPC data revealed an increase in the Tmin in the coldest month over the whole basin at a rate of 0.03-0.08 °C per decade, except in the east. Besides, an increase in diurnal temperature range and isothermally increased in the east up to 0.2 °C and 0.6% per decade, respectively. The results revealed negative implications of thermal bioclimatic change on water, ecology, and public health in the eastern mountainous region and positive impacts on vegetation in the west and northwest.

    Supplementary Information: The online version contains supplementary material available at 10.1007/s00477-022-02172-8.

  6. Salaudeen A, Shahid S, Ismail A, Adeogun BK, Ajibike MA, Bello AD, et al.
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159874.
    PMID: 36334669 DOI: 10.1016/j.scitotenv.2022.159874
    Recently, there is an upsurge in flood emergencies in Nigeria, in which their frequencies and impacts are expected to exacerbate in the future due to land-use/land cover (LULC) and climate change stressors. The separate and combined forces of these stressors on the Gongola river basin is feebly understood and the probable future impacts are not clear. Accordingly, this study uses a process-based watershed modelling approach - the Hydrological Simulation Program FORTRAN (HSPF) (i) to understand the basin's current and future hydrological fluxes and (ii) to quantify the effectiveness of five management options as adaptation measures for the impacts of the stressors. The ensemble means of the three models derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed for generating future climate scenarios, considering three distinct radiative forcing peculiar to the study area. Also, the historical and future LULC (developed from the hybrid of Cellular Automata and Markov Chain model) are used to produce the LULC scenarios for the basin. The effective calibration, uncertainty and sensitivity analyses are used for optimising the parameters of the model and the validated result implies a plausible model with efficiency of up to 75 %. Consequently, the results of individual impacts of the stressors yield amplification of the peak flows, with more profound impacts from climate stressor than the LULC. Therefore, the climate impact may trigger a marked peak discharge that is 48 % higher as compared to the historical peak flows which are equivalent to 10,000-year flood event. Whilst the combine impacts may further amplify this value by 27 % depending on the scenario. The proposed management interventions such as planned reforestation and reservoir at Dindima should attenuate the disastrous peak discharges by almost 36 %. Furthermore, the land management option should promote the carbon-sequestering project of the Paris agreement ratified by Nigeria. While the reservoir would serve secondary functions of energy production; employment opportunities, aside other social aspects. These measures are therefore expected to mitigate feasibly the negative impacts anticipated from the stressors and the approach can be employed in other river basins in Africa confronted with similar challenges.
  7. Zamir Hashmi SR, Khan MI, Khahro SH, Zaid O, Shahid Siddique M, Md Yusoff NI
    Materials (Basel), 2022 Nov 14;15(22).
    PMID: 36431509 DOI: 10.3390/ma15228024
    Carbon footprint reduction, recompense depletion of natural resources, as well as waste recycling are nowadays focused research directions to achieve sustainability without compromising the concrete strength parameters. Therefore, the purpose of the present study is to utilize different dosages of marble waste aggregates (MWA) and stone dust (SD) as a replacement for coarse and fine aggregate, respectively. The MWA with 10 to 30% coarse aggregate replacement and SD with 40 to 50% fine aggregate replacement were used to evaluate the physical properties (workability and absorption), durability (acid attack resistance), and strength properties (compressive, flexural, and tensile strength) of concrete. Moreover, statistical modeling was also performed using response surface methodology (RSM) to design the experiment, optimize the MWA and SD dosages, and finally validate the experimental results. Increasing MWA substitutions resulted in higher workability, lower absorption, and lower resistance to acid attack as compared with controlled concrete. However, reduced compressive strength, flexural strength, and tensile strength at 7-day and 28-day cured specimens were observed as compared to the controlled specimen. On the other hand, increasing SD content causes a reduction in workability, higher absorption, and lower resistance to acid attack compared with controlled concrete. Similarly, 7-day and 28-day compressive strength, flexural strength, and tensile strength of SD-substituted concrete showed improvement up to 50% replacement and a slight reduction at 60% replacement. However, the strength of SD substituted concrete is higher than controlled concrete. Quadratic models were suggested based on a higher coefficient of determination (R2) for all responses. Quadratic RSM models yielded R2 equaling 0.90 and 0.94 for compressive strength at 7 days and 28 days, respectively. Similarly, 0.94 and 0.96 for 7-day and 28-day flexural strength and 0.89 for tensile strength. The optimization performed through RSM indicates that 15% MWA and 50% SD yielded higher strength compared to all other mixtures. The predicted optimized data was validated experimentally with an error of less than 5%.
  8. Shahid M, Law D, Azfaralariff A, Mackeen MM, Chong TF, Fazry S
    Toxics, 2022 Oct 29;10(11).
    PMID: 36355947 DOI: 10.3390/toxics10110656
    Garcinia atriviridis Griff ex T. Anders (G. atroviridis) is one of the well-known species of the genus Garicinia that is native to Thailand, Myanmar, Peninsular Malaysia, and India. G. atroviridis is a perennial medium-sized tree that has a wide range of values, from food to medicinal use. Different parts of G. atroviridis are a great source of bioactive substances that have a positive impact on health. The extracts or bioactive constituents from G. atroviridis have demonstrated various therapeutic functions, including antioxidant, antimicrobial, anticancer, anti-inflammatory, antihyperlipidemic, and anti-diabetic. In this paper, we provide a critical review of G. atroviridis and its bioactive constituents in the prevention and treatment of different diseases, which will provide new insight to explore its putative domains of research.
  9. Shahid M, Azfaralariff A, Tufail M, Hussain Khan N, Abdulkareem Najm A, Firasat S, et al.
    PeerJ, 2022;10:e14132.
    PMID: 36518267 DOI: 10.7717/peerj.14132
    BACKGROUND: Primary congenital glaucoma (PCG) is the most common subtype of glaucoma caused by defects in the cytochrome P450 1B1 (CYP1B1) gene. It is developing among infants in more than 80% of cases who exhibit impairments in the anterior chamber angle and the trabecular meshwork. Thus, a comprehensive in silico approach was performed to evaluate the effect of high-risk deleterious missense variations in the CYP1B1 gene.

    MATERIAL AND METHODS: All the information for CYP1B1 missense variants was retrieved from the dbSNP database. Seven different tools, namely: SIFT, PolyPhen-2, PROVEAN, SNAP2, PANTHER, PhD-SNP, and Predict-SNP, were used for functional annotation, and two packages, which were I-Mutant 2.0 and MUpro, were used to predict the effect of the variants on protein stability. A phylogenetic conservation analysis using deleterious variants was performed by the ConSurf server. The 3D structures of the wild-type and mutants were generated using the I-TASSER tool, and a 50 ns molecular dynamic simulation (MDS) was executed using the GROMACS webserver to determine the stability of mutants compared to the native protein. Co-expression, protein-protein interaction (PPI), gene ontology (GO), and pathway analyses were additionally performed for the CYP1B1 in-depth study.

    RESULTS: All the retrieved data from the dbSNP database was subjected to functional, structural, and phylogenetic analysis. From the conducted analyses, a total of 19 high-risk variants (P52L, G61E, G90R, P118L, E173K, D291G, Y349D, G365W, G365R, R368H, R368C, D374N, N423Y, D430E, P442A, R444Q, F445L, R469W, and C470Y) were screened out that were considered to be deleterious to the CYP1B1 gene. The phylogenetic analysis revealed that the majority of the variants occurred in highly conserved regions. The MD simulation analysis exhibited that all mutants' average root mean square deviation (RMSD) values were higher compared to the wild-type protein, which could potentially cause CYP1B1 protein dysfunction, leading to the severity of the disease. Moreover, it has been discovered that CYP1A1, VCAN, HSD17B1, HSD17B2, and AKR1C3 are highly co-expressed and interact with CYP1B1. Besides, the CYP1B1 protein is primarily involved in the metabolism of xenobiotics, chemical carcinogenesis, the retinal metabolic process, and steroid hormone biosynthesis pathways, demonstrating its multifaceted and important roles.

    DISCUSSION: This is the first comprehensive study that adds essential information to the ongoing efforts to understand the crucial role of genetic signatures in the development of PCG and will be useful for more targeted gene-disease association studies.

  10. Tao H, Bobaker AM, Ramal MM, Yaseen ZM, Hossain MS, Shahid S
    Environ Sci Pollut Res Int, 2019 Jan;26(1):923-937.
    PMID: 30421367 DOI: 10.1007/s11356-018-3663-x
    Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and non-point sources of pollutions. Determination of water quality variables using mathematical models instead of laboratory experiments can have venerable significance in term of the environmental prospective. In this research, application of a new developed hybrid response surface method (HRSM) which is a modified model of the existing response surface model (RSM) is proposed for the first time to predict biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC), alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS) as input attributes. The monthly water quality sampling data for the period 2004-2013 was considered for structuring the input-output pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the predictors and predictand. The prediction performances of HRSM were compared with that of support vector regression (SVR) model which is one of the most predominate applied machine learning approaches of the state-of-the-art for water quality prediction. The results indicated a very optimistic modeling accuracy of the proposed HRSM model to predict BOD and DO. Furthermore, the results showed a robust alternative mathematical model for determining water quality particularly in a data scarce region like Iraq.
  11. Fu M, Le C, Fan T, Prakapovich R, Manko D, Dmytrenko O, et al.
    Environ Sci Pollut Res Int, 2021 Dec;28(45):64818-64829.
    PMID: 34318419 DOI: 10.1007/s11356-021-15574-y
    The atmospheric particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) is one of the key indicators of air pollutants. Accurate prediction of PM2.5 concentration is very important for air pollution monitoring and public health management. However, the presence of noise in PM2.5 data series is a major challenge of its accurate prediction. A novel hybrid PM2.5 concentration prediction model is proposed in this study by combining complete ensemble empirical mode decomposition (CEEMD) method, Pearson's correlation analysis, and a deep long short-term memory (LSTM) method. CEEMD was employed to decompose historical PM2.5 concentration data to different frequencies in order to enhance the timing characteristics of data. Pearson's correlation was used to screen the different frequency intrinsic-mode functions of decomposed data. Finally, the filtered enhancement data were inputted to a deep LSTM network with multiple hidden layers for training and prediction. The results evidenced the potential of the CEEMD-LSTM hybrid model with a prediction accuracy of approximately 80% and model convergence after 700 training epochs. The secondary screening of Pearson's correlation test improved the model (CEEMD-Pearson) accuracy up to 87% but model convergence after 800 epochs. The hybrid model combining CEEMD-Pearson with the deep LSTM neural network showed a prediction accuracy of nearly 90% and model convergence after 650 interactions. The results provide a clear indication of higher prediction accuracy of PM2.5 with less computation time through hybridization of CEEMD-Pearson with deep LSTM models and its potential to be employed for air pollution monitoring.
  12. Hamed MM, Nashwan MS, Shahid S, Ismail TB, Dewan A, Asaduzzaman M
    Environ Sci Pollut Res Int, 2022 Dec;29(60):91212-91231.
    PMID: 35881284 DOI: 10.1007/s11356-022-22036-6
    Mapping potential changes in bioclimatic characteristics are critical for planning mitigation goals and climate change adaptation. Assessment of such changes is particularly important for Southeast Asia (SEA) - home to global largest ecological diversity. Twenty-three global climate models (GCMs) of Coupled Model Intercomparison Project Phase 6 (CMIP6) were used in this study to evaluate changes in 11 thermal bioclimatic indicators over SEA for two shared socioeconomic pathways (SSPs), 2-4.5 and 5-8.5. Spatial changes in the ensemble mean, 5th, and 95th percentile of each indicator for near (2020-2059) and far (2060-2099) periods were examined in order to understand temporal changes and associated uncertainty. The results indicated large spatial heterogeneity and temporal variability in projected changes of bioclimatic indicators. A higher change was projected for mainland SEA in the far future and less in maritime region during the near future. At the same time, uncertainty in the projected bioclimatic indices was higher for mainland than maritime SEA. Analysis of mean multi-model ensemble revealed a change in mean temperature ranged from - 0.71 to 3.23 °C in near and from 0.00 to 4.07 °C in far futures. The diurnal temperature range was projected to reduce over most of SEA (ranging from - 1.1 to - 2.0 °C), while isothermality is likely to decrease from - 1.1 to - 4.6%. A decrease in isothermality along with narrowing of seasonality indicated a possible shift in climate, particularly in the north of mainland SEA. Maximum temperature in the warmest month/quarter was projected to increase a little more than the coldest month/quarter and the mean temperature in the driest month to increase more than the wettest month. This would cause an increase in the annual temperature range in the future.
  13. Shahid F, Nowrin SA, Alam MK, Khamis MF, Husein A, Rahman NA
    Healthcare (Basel), 2023 Mar 15;11(6).
    PMID: 36981521 DOI: 10.3390/healthcare11060864
    This study aimed to assess the outcomes of low-level laser therapy (LLLT) with the conventional bracket (CB) and self-ligating (SL) bracket systems on root resorption (RR) during orthodontic treatment. A total of 32 patients were included in this randomized clinical trial. All the patients were randomly divided into four individual groups (SLL: self-ligating laser, CBL: conventional bracket laser, SLNL: self-ligating non-laser, CBNL: conventional bracket non-laser). RR was measured from the cone-beam computed tomography (CBCT) radiographs which were taken at two stages of the orthodontic treatment: pre-treatment (T1) and after leveling and alignment stage (T2). Wilcoxon rank test for the comparison was conducted to compare the RR at T1 and T2 stages within each group and showed a significant difference (p < 0.05) for various variables. Mann Whitney test compared the RR in laser and non-laser groups irrespective of the bracket systems and exhibited no significant differences except the left lateral incisor. Moreover, CB and SL groups showed no significant difference in RR among any tooth. Kruskal Wallis test was performed to compare the RR among all groups which presented no significant differences. LLLT and bracket systems have no consequences on RR until the leveling and alignment stage of orthodontic treatment.
  14. Hashim BM, Al-Naseri SK, Hamadi AM, Mahmood TA, Halder B, Shahid S, et al.
    Int J Disaster Risk Reduct, 2023 Aug;94:103799.
    PMID: 37360250 DOI: 10.1016/j.ijdrr.2023.103799
    The COVID-19 pandemic was a serious global health emergency in 2020 and 2021. This study analyzed the seasonal association of weekly averages of meteorological parameters, such as wind speed, solar radiation, temperature, relative humidity, and air pollutant PM2.5, with confirmed COVID-19 cases and deaths in Baghdad, Iraq, a major megacity of the Middle East, for the period June 2020 to August 2021. Spearman and Kendall correlation coefficients were used to investigate the association. The results showed that wind speed, air temperature, and solar radiation have positive and strong correlations with the confirmed cases and deaths in the cold season (autumn and winter 2020-2021). The total COVID-19 cases negatively correlated with relative humidity but were not significant in all seasons. Besides, PM2.5 strongly correlated with COVID-19 confirmed cases for the summer of 2020. The death distribution by age group showed the highest deaths for those aged 60-69. The highest number of deaths was 41% in the summer of 2020. The study provided useful information about the COVID-19 health emergency and meteorological parameters, which can be used for future health disaster planning, adopting prevention strategies and providing healthcare procedures to protect against future infraction transmission.
  15. Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, et al.
    Int J Biol Macromol, 2023 Sep 13;253(Pt 4):126889.
    PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889
    Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
  16. Mahesar RA, Shahid S, Asif S, Khoso AK, Kar SK, Shabbir T
    CNS Spectr, 2023 Oct 20.
    PMID: 37861078 DOI: 10.1017/S1092852923006351
    Numerous studies have been conducted globally to assess the compliance level of newspapers with the World Health Organization's media guidelines for responsible suicide reporting. To identify and review such studies conducted in Muslim-majority countries between 2014 and 2022, we searched PubMed and Google Scholar databases. We identified 12 eligible studies from Pakistan (n = 4), Bangladesh (n = 2), Malaysia (n = 1), Indonesia (n = 1), Iraq (n = 1), Iran (n = 1), Nigeria (n = 1), and Egypt (n = 1). These studies indicated an overall lack of adherence to the guidelines. However, the level of nonadherence was particularly high in Pakistan. Effective suicide prevention programs may help in promoting responsible reporting of suicide.
  17. Shahid MN, Khan TM, Neoh CF, Lean QY, Bukhsh A, Karuppannan M
    Front Pharmacol, 2021;12:638628.
    PMID: 34483894 DOI: 10.3389/fphar.2021.638628
    Background. Infertility is an emerging health issue for men. Comparative efficacy of different pharmacological interventions on male infertility is not clear. The aim of this review is to investigate the efficacy of various pharmacological interventions among men with idiopathic male infertility. All randomized control trials evaluating the effectuality of interventions on male infertility were included for network meta-analysis (NMA) from inception to 31 April 2020, systematically performed using STATA through the random effect model. The protocol was registered at PROSPERO (CRD42020152891). Results. The outcomes of interest were semen and hormonal parameters. Treatment effects (p < 0.05) were estimated through WMD at the confidence interval of 95%. Upon applying exclusion criteria, n=28 RCTs were found eligible for NMA. Results from NMA indicated that consumption of supplements increases sperm concentration levels [6.26, 95% CI 3.32, 9.21] in comparison to SERMs [4.97, 95% CI 1.61, 8.32], hormones [4.14, 95% CI 1.83, 6.46], and vitamins [0.15, 95% CI -20.86, 21.15)] with placebo, whereas the use of SERMs increased percentage sperm motility [6.69, 95% CI 2.38, 10.99] in comparison to supplements [6.46, 95% CI 2.57, 10.06], hormones [3.47, 95% CI 0.40, 6.54], and vitamins [-1.24, 95% CI -11.84, 9.43] with placebo. Consumption of hormones increased the sperm morphology [3.71, 95% CI, 1.34, 6.07] in contrast to supplements [2.22, 95% CI 0.12, 4.55], SERMs [2.21, 95% CI -0.78, 5.20], and vitamins [0.51, 95% CI -3.60, 4.62] with placebo. Supplements boosted the total testosterone levels [2.70, 95% CI 1.34, 4.07] in comparison to SERMs [1.83, 95% CI 1.16, 2.50], hormones [0.40, 95% CI -0.49, 1.29], and vitamins [-0.70, 95% CI -6.71, 5.31] with placebo. SERMs increase the serum FSH levels [3.63, 95% CI 1.48, 5.79] better than hormones [1.29, 95% CI -0.79, 3.36], vitamins [0.03, 95% CI -2.69, 2.76], and supplements [-4.45, 95% CI -7.15, -1.76] in comparison with placebo. Conclusion. This review establishes that all interventions had a significantly positive effect on male infertility. Statistically significant increased sperm parameters were noted in combinations of zinc sulfate (220 mg BID), clomiphene citrate (50 mg BID), and testosterone undecanoate and CoQ10; tamoxifen citrate and FSH were shown to improve the hormonal profile in infertile males.
  18. Abdullah M, Rafiq A, Shahid N, Nasir Kalam M, Munir Y, Daoud Butt M, et al.
    Pak J Pharm Sci, 2023 Nov;36(6(Special)):1849-1858.
    PMID: 38264890
    Pharmaceutical substance sitagliptin has long been used to treat diabetes. However, subsequent researches have shown that sitagliptin has additional therapeutic effects. Anti-inflammatory effects are observed. Combining sitagliptin with biodegradable polymers like nanoparticles for chemotherapy may be effective. This method enhances therapeutic agent pharmacokinetics. This study tests sitagliptin (SIT) chitosan base nanoparticles against MCF-7 cancer cell lines for anti-cancer effects. Sitagliptin chitosan-based nanoparticles are tested for their ability to suppress MCF-7 cancer cell proliferation. Ionic gelation, a typical nanoparticle manufacturing method, was used. A detailed examination of the nanoparticles followed, using particle-size measurement, FTIR and SEM. Entrapment efficiency, drug-loading, and in-vitro drug release were assessed. Loaded with chitosan and sitagliptin, the nanoparticles averaged 500nm and 534nm in diameter. Sitagliptin has little effect on particle size. Chitosan-based Sitagliptin nanoparticles grew slightly, suggesting Sitagliptin is present. SIT-SC-NPs had 32% encapsulation efficiency and 30% drug content due to their high polymer-to-drug ratio. SEM analysis showed that both drug-free and sitagliptin-loaded nanoparticles are spherical, as shown by the different bands in the photos. The SIT-CS-NPs had a 120-hour release efficiency of up to 80%. This suggests that these nanoparticles could cure hepatocellular carcinoma, specifically MCF-7 cell lines.
  19. Tanimu B, Hamed MM, Bello AD, Abdullahi SA, Ajibike MA, Shahid S
    Environ Sci Pollut Res Int, 2024 Feb;31(10):15986-16010.
    PMID: 38308777 DOI: 10.1007/s11356-024-32128-0
    Choosing a suitable gridded climate dataset is a significant challenge in hydro-climatic research, particularly in areas lacking long-term, reliable, and dense records. This study used the most common method (Perkins skill score (PSS)) with two advanced time series similarity algorithms, short time series distance (STS), and cross-correlation distance (CCD), for the first time to evaluate, compare, and rank five gridded climate datasets, namely, Climate Research Unit (CRU), TERRA Climate (TERRA), Climate Prediction Center (CPC), European Reanalysis V.5 (ERA5), and Climatologies at high resolution for Earth's land surface areas (CHELSA), according to their ability to replicate the in situ rainfall and temperature data in Nigeria. The performance of the methods was evaluated by comparing the ranking obtained using compromise programming (CP) based on four statistical criteria in replicating in situ rainfall, maximum temperature, and minimum temperature at 26 locations distributed over Nigeria. Both methods identified CRU as Nigeria's best-gridded climate dataset, followed by CHELSA, TERRA, ERA5, and CPC. The integrated STS values using the group decision-making method for CRU rainfall, maximum and minimum temperatures were 17, 10.1, and 20.8, respectively, while CDD values for those variables were 17.7, 11, and 12.2, respectively. The CP based on conventional statistical metrics supported the results obtained using STS and CCD. CRU's Pbias was between 0.5 and 1; KGE ranged from 0.5 to 0.9; NSE ranged from 0.3 to 0.8; and NRMSE between - 30 and 68.2, which were much better than the other products. The findings establish STS and CCD's ability to evaluate the performance of climate data by avoiding the complex and time-consuming multi-criteria decision algorithms based on multiple statistical metrics.
  20. Pham QB, Sammen SS, Abba SI, Mohammadi B, Shahid S, Abdulkadir RA
    PMID: 33625698 DOI: 10.1007/s11356-021-12792-2
    Precise monitoring of cyanobacteria concentration in water resources is a daunting task. The development of reliable tools to monitor this contamination is an important research topic in water resources management. Indirect methods such as chlorophyll-a determination, cell counting, and toxin measurement of the cyanobacteria are tedious, cumbersome, and often lead to inaccurate results. The quantity of phycocyanin (PC) pigment is considered more appropriate for cyanobacteria monitoring. Traditional approaches for PC estimation are time-consuming, expensive, and require high expertise. Recently, some studies have proposed the application of artificial intelligence (AI) techniques to predict the amount of PC concentration. Nonetheless, most of these researches are limited to standalone modeling schemas such as artificial neural network (ANN), multilayer perceptron (MLP), and support vector machine (SVM). The independent schema provides imprecise results when faced with highly nonlinear systems and data uncertainties resulting from environmental disturbances. To alleviate the limitations of the existing models, this study proposes the first application of a hybrid AI model that integrates the potentials of relevance vector machine (RVM) and flower pollination algorithm (RVM-FPA) to predict the PC concentration in water resources. The performance of the hybrid model is compared with the standalone RVM model. The prediction performance of the proposed models was evaluated at two stations (stations 508 and 478) using different statistical and graphical performance evaluation methods. The results showed that the hybrid models exhibited higher performance at both stations compared to the standalone RVM model. The proposed hybrid RVM-FPA can therefore serve as a reliable predictive tool for PC concentration in water resources.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links