Displaying publications 121 - 140 of 166 in total

Abstract:
Sort:
  1. Cheng S, Thinagaran D, Mohanna SZ, Noh NA
    Environ Entomol, 2014 Aug;43(4):1105-16.
    PMID: 24915136 DOI: 10.1603/EN13318
    Coptotermes gestroi (Wasmann) or the Asian subterranean termite is a serious structural pest in urban settlements in Southeast Asia that has been introduced to other parts of the world through human commerce. Although mitochondrial DNA markers were previously used to shed light on the dispersal history of the Asian subterranean termite, there were limited attempts to analyze or include populations of the termite found in the wild in Southeast Asia. In this study, we analyzed the 16S ribosomal RNA (16S rRNA) and cytochrome c oxidase subunit 1 (cox1) genes of Asian subterranean termite colonies found in mangrove swamps, beach forests, plantations, and buildings in semi-urban and urban areas to determine the relationship between colonies found in the wild and the urban habitat, and to investigate the possibility of different ecotypes of the termite in Peninsular Malaysia. Our findings show that the 16S rRNA haplotypes recovered from this study clustered into eastern, western, and southern populations of the termite, while the cox1 haplotypes were often specific to an area or site. The 16S rRNA and cox1 genes or haplotypes showed that the most abundant haplotype occupied a wide range of environments or habitats. In addition, the cox1 tree showed evidence of historical biogeography where basal haplotypes inhabited a wide range of habitats, while apical haplotypes were restricted to mangrove swamps and beach forests. Information on the haplotype-habitat association of C. gestroi will enable the prediction of habitats that may harbor or be at risk of invasion in areas where they have been introduced.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  2. Lee WS, Sokol RJ
    J Pediatr, 2013 Oct;163(4):942-8.
    PMID: 23810725 DOI: 10.1016/j.jpeds.2013.05.036
    Matched MeSH terms: DNA, Mitochondrial/genetics
  3. Olival KJ, Dick CW, Simmons NB, Morales JC, Melnick DJ, Dittmar K, et al.
    Parasit Vectors, 2013 Aug 08;6:231.
    PMID: 23924629 DOI: 10.1186/1756-3305-6-231
    BACKGROUND: Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date.

    METHODS: We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities.

    RESULTS: All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure.

    CONCLUSIONS: The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation.

    Matched MeSH terms: DNA, Mitochondrial/genetics
  4. Ali ME, Hashim U, Kashif M, Mustafa S, Che Man YB, Abd Hamid SB
    Genet. Mol. Res., 2012;11(2):1762-72.
    PMID: 22843053 DOI: 10.4238/2012.June.29.9
    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  5. Ali ME, Hashim U, Mustafa S, Man YB, Yusop MH, Bari MF, et al.
    Nanotechnology, 2011 May 13;22(19):195503.
    PMID: 21430321 DOI: 10.1088/0957-4484/22/19/195503
    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  6. Delgado AM, Cook JM
    BMC Evol. Biol., 2009;9:49.
    PMID: 19257899 DOI: 10.1186/1471-2148-9-49
    Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  7. Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE
    Mol Ecol, 2007 May;16(10):2045-62.
    PMID: 17498231
    We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  8. Macaulay V, Hill C, Achilli A, Rengo C, Clarke D, Meehan W, et al.
    Science, 2005 May 13;308(5724):1034-6.
    PMID: 15890885
    A recent dispersal of modern humans out of Africa is now widely accepted, but the routes taken across Eurasia are still disputed. We show that mitochondrial DNA variation in isolated "relict" populations in southeast Asia supports the view that there was only a single dispersal from Africa, most likely via a southern coastal route, through India and onward into southeast Asia and Australasia. There was an early offshoot, leading ultimately to the settlement of the Near East and Europe, but the main dispersal from India to Australia approximately 65,000 years ago was rapid, most likely taking only a few thousand years.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  9. Lal S, Madhavan M, Heng CK
    Ann. Hum. Genet., 2005 Nov;69(Pt 6):639-44.
    PMID: 16266403
    Mitochondria are eukaryotic cytoplasmic organelles responsible for oxidative phosphorylation. The C to A nucleotide transversion in the NADH dehydrogenase subunit 2 (MT-ND2) coding region of mitochondrial DNA has been reported to be associated with plasma lipid levels, adult onset diseases and longevity. We have examined the role of this polymorphism in relation to plasma lipid levels and age in a total of 713 healthy individuals belonging to 3 ethnic groups in Singapore. The frequency of the A allele was significantly higher (p < 0.05) among the Chinese (0.15) in comparison to the Malays (0.05) and Indians (0.02). No significant difference in the frequency of the allele was observed between healthy and coronary artery disease subjects, and between age-stratified subjects. We found that the polymorphism is significantly associated in an ethnic- and gender-specific manner with plasma apoB levels in the Chinese males (p < 0.05). This is the first epidemiological report of the mt5178 C > A polymorphism and its association with plasma lipid levels in Asian populations outside Japan.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  10. Matsui M, Shimada T, Ota H, Tanaka-Ueno T
    Mol Phylogenet Evol, 2005 Dec;37(3):733-42.
    PMID: 15964212
    The genus Rana, notably diversified in Oriental regions from China to Southeast Asia, includes a group of cascade frogs assigned to subgenera Odorrana and Eburana. Among them, R. ishikawae and the R. narina complex represent the northernmost members occurring from Taiwan to the Ryukyu Archipelago of Japan. Relationships of these frogs with the continental members, as well as the history of their invasions to islands, have been unclear. The taxonomic status of Odorrana and related genera varies among authors and no phylogenetic reassessment has been done. Using partial sequences of mitochondrial 12S and 16S rRNA genes, we estimated phylogenetic relationships among 17 species of the section Hylarana including Odorrana and Eburana, and related species from the Ryukyus, Taiwan, China, Thailand, Malaysia, and Indonesia. We estimate that (1) Odorrana is monophyletic and encompasses species of Eburana and R. hosii, which is now placed in Chalcorana, (2) the ancestor of R. ishikawae separated from other Rana in the middle to late Miocene prior to its entry to the Ryukyu Archipelago, (3) the ancestor of the R. narina complex later diversified in continental Asia, and invaded the Ryukyu Archipelago through Taiwan, (4) the R. narina complex attained its current distribution within the Ryukyus through niche segregations, and (5) vicariance of R. hosii between Malay Peninsula and Borneo occurred much later than the divergence events in the R. narina complex. Current subgeneric classification of Rana, at least of Southeast Asian members, requires full reassessment in the light of phylogenetic relationships.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  11. Zhang KJ, Liu L, Rong X, Zhang GH, Liu H, Liu YH
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4314-4315.
    PMID: 26462416
    We sequenced and annotated the complete mitochondrial genome (mitogenome) of Bactrocera diaphora (Diptera: Tephtitidae), which is an economically important pest in the southwest area of China, India, Sri Lanka, Vietnam and Malaysia. This mitogenome is 15 890 bp in length with an A + T content of 74.103%, and contains 37 typical animal mitochondrial genes that are arranged in the same order as that of the inferred ancestral insects. All protein-coding genes (PCGs) start with a typical ATN codon, except cox1 that begins with TCG. Ten PCGs stop with termination codon TAA or TAG, whereas cox1, nad1 and nad5 have single T-- as the incomplete stop codon. All of the transfer RNA genes present the typical clover leaf secondary structure except trnS1 (AGN) with a looping D-arm. The A + T-rich region is located between rrnS and trnI with a length of 946 bp, and contains a 20 bp poly-T stretch and 22 bp poly-A stretch. Except the control region, the longest intergenic spacer is located between trnR and trnN that is 94 bp long with an excessive high A + T content (95.74%) and a microsatellite-like region (TA)13.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  12. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  13. Low VL, Tay ST, Kho KL, Koh FX, Tan TK, Lim YA, et al.
    Parasit Vectors, 2015;8:341.
    PMID: 26104478 DOI: 10.1186/s13071-015-0956-5
    The morphotaxonomy of Rhipicephalus microplus complex has been challenged in the last few years and prompted many biologists to adopt a DNA-based method for distinguishing the members of this group. In the present study, we used a mitochondrial DNA analysis to characterise the genetic assemblages, population structure and dispersal pattern of R. microplus from Southeast Asia, the region where the species originated.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  14. Yu H, Wang W, Fang S, Zhang YP, Lin FJ, Geng ZC
    Mol Phylogenet Evol, 1999 Dec;13(3):556-65.
    PMID: 10620413
    The sequences of the mitochondrial ND4 gene (1339 bp) and the ND4L gene (290 bp) were determined for all the 14 extant taxa of the Drosophila nasuta subgroup. The average A + T content of ND4 genes is 76.5% and that of ND4L genes is 83.5%. A total of 114 variable sites were scored. The ND4 gene sequence divergence ranged from 0 to 5.4% within the subgroup. The substitution rate of the ND4 gene is about 1.25% per million years. The base substitution of the genes is strongly transition biased. Neighbor-joining and parsimony were used to construct a phylogeny based on the resultant sequence data set. According to these trees, five distinct mtDNA clades can be identified. D. niveifrons represents the most diverged lineage. D. sulfurigaster bilimbata and D. kepulauana form two independent lineages. The other two clades are the kohkoa complex and the albomicans complex. The kohkoa complex consists of D. sulfurigaster sulfurigaster, D. pulaua, D. kohkoa, and Taxon-F. The albomicans complex can be divided into two groups: D. nasuta, D. sulfurigaster neonasuta, D. sulfurigaster albostrigata, and D. albomicans from Chiangmai form one group; and D. pallidifrons, Taxon-I, Taxon-J, and D. albomicans from China form the other group. High genetic differentiation was found among D. albomicans populations. Based on our phylogenetic results, we hypothesize that D. niveifrons diverged first from the D. nasuta subgroup in Papua New Guinea about 3.5 Mya. The ancestral population spread to the north and when it reached Borneo, it diversified sequentially into the kohkoa complex, D. s. bilimbata, and D. kepulauana. About 1 Mya, another radiation occurred when the ancestral populations reached the Indo-China Peninsula, forming the albomicans complex. Discrepancy between morphological groupings and phylogenetic results suggests that the male morphological traits may not be orthologous.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  15. Quek SP, Davies SJ, Itino T, Pierce NE
    Evolution, 2004 Mar;58(3):554-70.
    PMID: 15119439
    We investigate the evolution of host association in a cryptic complex of mutualistic Crematogaster (Decacrema) ants that inhabits and defends Macaranga trees in Southeast Asia. Previous phylogenetic studies based on limited samplings of Decacrema present conflicting reconstructions of the evolutionary history of the association, inferring both cospeciation and the predominance of host shifts. We use cytochrome oxidase I (COI) to reconstruct phylogenetic relationships in a comprehensive sampling of the Decacrema inhabitants of Macaranga. Using a published Macaranga phylogeny, we test whether the ants and plants have cospeciated. The COI phylogeny reveals 10 well-supported lineages and an absence of cospeciation. Host shifts, however, have been constrained by stem traits that are themselves correlated with Macaranga phylogeny. Earlier lineages of Decacrema exclusively inhabit waxy stems, a basal state in the Pachystemon clade within Macaranga, whereas younger species of Pachystemon, characterized by nonwaxy stems, are inhabited only by younger lineages of Decacrema. Despite the absence of cospeciation, the correlated succession of stem texture in both phylogenies suggests that Decacrema and Pachystemon have diversified in association, or codiversified. Subsequent to the colonization of the Pachystemon clade, Decacrema expanded onto a second clade within Macaranga, inducing the development of myrmecophytism in the Pruinosae group. Confinement to the aseasonal wet climate zone of western Malesia suggests myrmecophytic Macaranga are no older than the wet forest community in Southeast Asia, estimated to be about 20 million years old (early Miocene). Our calculation of COI divergence rates from several published arthropod studies that relied on tenable calibrations indicates a generally conserved rate of approximately 1.5% per million years. Applying this rate to a rate-smoothed Bayesian chronogram of the ants, the Decacrema from Macaranga are inferred to be at least 12 million years old (mid-Miocene). However, using the extremes of rate variation in COI produces an age as recent as 6 million years. Our inferred timeline based on 1.5% per million years concurs with independent biogeographical events in the region reconstructed from palynological data, thus suggesting that the evolutionary histories of Decacrema and their Pachystemon hosts have been contemporaneous since the mid-Miocene. The evolution of myrmecophytism enabled Macaranga to radiate into enemy-free space, while the ants' diversification has been shaped by stem traits, host specialization, and geographic factors. We discuss the possibility that the ancient and exclusive association between Decacrema and Macaranga was facilitated by an impoverished diversity of myrmecophytes and phytoecious (obligately plant inhabiting) ants in the region.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  16. Divis PCS, Duffy CW, Kadir KA, Singh B, Conway DJ
    Mol Ecol, 2018 02;27(4):860-870.
    PMID: 29292549 DOI: 10.1111/mec.14477
    Plasmodium knowlesi is a significant cause of human malaria transmitted as a zoonosis from macaque reservoir hosts in South-East Asia. Microsatellite genotyping has indicated that human infections in Malaysian Borneo are an admixture of two highly divergent sympatric parasite subpopulations that are, respectively, associated with long-tailed macaques (Cluster 1) and pig-tailed macaques (Cluster 2). Whole-genome sequences of clinical isolates subsequently confirmed the separate clusters, although fewer of the less common Cluster 2 type were sequenced. Here, to analyse population structure and genomic divergence in subpopulation samples of comparable depth, genome sequences were generated from 21 new clinical infections identified as Cluster 2 by microsatellite analysis, yielding a cumulative sample size for this subpopulation similar to that for Cluster 1. Profound heterogeneity in the level of intercluster divergence was distributed across the genome, with long contiguous chromosomal blocks having high or low divergence. Different mitochondrial genome clades were associated with the two major subpopulations, but limited exchange of haplotypes from one to the other was evident, as was also the case for the maternally inherited apicoplast genome. These findings indicate deep divergence of the two sympatric P. knowlesi subpopulations, with introgression likely to have occurred recently. There is no evidence yet of specific adaptation at any introgressed locus, but the recombinant mosaic types offer enhanced diversity on which selection may operate in a currently changing landscape and human environment. Loci responsible for maintaining genetic isolation of the sympatric subpopulations need to be identified in the chromosomal regions showing fixed differences.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  17. Soares PA, Trejaut JA, Rito T, Cavadas B, Hill C, Eng KK, et al.
    Hum Genet, 2016 Mar;135(3):309-26.
    PMID: 26781090 DOI: 10.1007/s00439-015-1620-z
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The "out-of-Taiwan" model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  18. Ewart KM, Lightson AL, Sitam FT, Rovie-Ryan JJ, Mather N, McEwing R
    Forensic Sci Int Genet, 2020 01;44:102187.
    PMID: 31670244 DOI: 10.1016/j.fsigen.2019.102187
    The illegal ivory trade continues to drive elephant poaching. Large ivory seizures in Africa and Asia are still commonplace. Wildlife forensics is recognised as a key enforcement tool to combat this trade. However, the time and resources required to effectively test large ivory seizures is often prohibitive. This limits or delays testing, which may impede investigations and/or prosecutions. Typically, DNA analysis of an ivory seizure involves pairing and sorting the tusks, sampling the tusks, powdering the sample, decalcification, then DNA extraction. Here, we optimize the most time-consuming components of this process: sampling and decalcification. Firstly, using simulations, we demonstrate that tusks do not need to be paired to ensure an adequate number of unique elephants are sampled in a large seizure. Secondly, we determined that directly powdering the ivory using a Dremel drill with a high-speed cutter bit, instead of cutting the ivory with a circular saw and subsequently powdering the sample in liquid nitrogen with a freezer mill, produces comparable results. Finally, we optimized a rapid 2 -h decalcification protocol that produces comparable results to a standard 3-day protocol. We tested/optimised the protocols on 33 raw and worked ivory samples, and demonstrated their utility on a case study, successfully identifying 94% of samples taken from 123 tusks. Using these new rapid protocols, the entire sampling and DNA extraction process takes less than one day and requires less-expensive equipment. We expect that the implementation of these rapid protocols will promote more consistent and timely testing of ivory seizures suitable for enforcement action.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  19. Anderson DL, Trueman JW
    Exp Appl Acarol, 2000 Mar;24(3):165-89.
    PMID: 11108385
    Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study. Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas. Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  20. Kaur T, Ong AH
    Biochem Genet, 2011 Oct;49(9-10):562-75.
    PMID: 21461907 DOI: 10.1007/s10528-011-9431-y
    This study describes the organization of the repetitive pattern in the mtDNA control region of Tomistoma schlegelii. Using newly designed primers, we detected length variations of approximately 50-100 bp among individuals, and only one individual showed a heteroplasmic band. Sequencing the region after CSB III revealed two main patterns: a repeat motif and a variable number tandem repeat (VNTR) pattern. The VNTR region, with a core unit of 104 bp, consisting of four motifs and a short AT chain, is implicated in the length variation seen among individuals of Tomistoma. A conserved motif seen in a family unit indicated that the repeat pattern was stably inherited from the maternal parent to all offspring. A combination of VNTR patterns specific to different crocodilians was seen in Tomistoma, and the overall secondary structure was shown to be similar to that in Crocodylus and Gavialis.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links