Displaying publications 121 - 140 of 737 in total

Abstract:
Sort:
  1. Armstrong JW, Tang J, Wang S
    J Econ Entomol, 2009 Apr;102(2):522-32.
    PMID: 19449631
    The late-aged egg and third-instar life stages of laboratory-reared Malaysian fruit fly, Bactrocera latifrons (Hendel); Mediterranean fruit fly, Ceratitis capitata (Wiedemann); melon fly, B. cucurbitae Coquillett; and oriental fruit fly, B. dorsalis (Hendel), (Diptera: Tephritidae); and the third instars of wild Mediterranean fruit fly were exposed to thermal treatments. A heating block system was used to determine the thermal death kinetics of the four fruit fly species. Treatments consisted of heating the fruit fly life stages to 44, 46, 48, and 50 degrees C and holding for different times ranging from 0 to 120 min depending on the thermal mortality response and time required to obtain 100% mortality for each species and life stage. The 0.5-order kinetic model had the best fit to the survival ratio for all the treatment temperatures and was used to predict lethal times. The thermal death time (TDT) curves showed a tolerance order of Mediterranean fruit fly eggs < or = third instars at 44, 46, and 50 degrees C, third instars < or = eggs at 48 degrees C, and wild third instars < the laboratory-reared third instars. Comparison between Mediterranean fruit fly third instar thermotolerance from Hawaii and Israel showed that Israel Mediterranean fruit fly was more thermotolerant. A comparison of minimum treatment times at a given temperature required to obtain 100% mortality of laboratory-reared Malaysian, Mediterranean (Hawaii and Israel strains), melon, Mexican, and oriental fruit fly eggs or third instars and wild Mediterranean fruit fly (Hawaii strain) eggs or third instars showed that oriental fruit fly was the most thermotolerant among the third instars, and the difference in heat tolerance between third instars and eggs was negligible at 50 degrees C.
    Matched MeSH terms: Hot Temperature*
  2. Leal Filho W, Echevarria Icaza L, Emanche VO, Quasem Al-Amin A
    PMID: 29257100 DOI: 10.3390/ijerph14121600
    The impacts of climate changes on cities, which are home to over half of the world's population, are already being felt. In many cases, the intensive speed with which urban centres have been growing means that little attention has been paid to the role played by climatic factors in maintaining quality of life. Among the negative consequences of rapid city growth is the expansion of the problems posed by urban heat islands (UHIs), defined as areas in a city that are much warmer than other sites, especially in comparison with rural areas. This paper analyses the consistency of the UHI-related literature in three stages: first it outlines its characteristics and impacts in a wide variety of cities around the world, which poses pressures to public health in many different countries. Then it introduces strategies which may be employed in order to reduce its effects, and finally it analyses available tools to systematize the initial high level assessment of the phenomenon for multidisciplinary teams involved in the urban planning process. The analysis of literature on the characteristics, impacts, strategies and digital tools to assess on the UHI, reveals the wide variety of parameters, methods, tools and strategies analysed and suggested in the different studies, which does not always allow to compare or standardize the diagnosis or solutions.
    Matched MeSH terms: Hot Temperature/adverse effects*
  3. Wong RS, Alias NNM, Ong EBB, Liew MWO
    Methods Mol Biol, 2023;2617:189-200.
    PMID: 36656525 DOI: 10.1007/978-1-0716-2930-7_13
    Inclusion bodies (IB) are dense insoluble aggregates of mostly misfolded polypeptides that usually result from recombinant protein overexpression. IB formation has been observed in protein expression systems such as E. coli, yeast, and higher eukaryotes. To recover soluble recombinant proteins in their native state, IB are commonly first solubilized with a high concentration of denaturant. This is followed by concurrent denaturant removal or reduction and a transition into a refolding-favorable chemical environment to facilitate the refolding of solubilized protein to its native state. Due to the high concentration of denaturant used, conventional refolding approaches can result in dilute products and are buffer inefficient. To circumvent the limitations of conventional refolding approaches, a temperature-based refolding approach which combines a low concentration of denaturant (0.5 M guanidine hydrochloride, GdnHCl) with a high temperature (95 °C) during solubilization was proposed. In this chapter, we describe a temperature-based refolding approach for the recovery of core streptavidin (cSAV) from IB. Through the temperature-based approach, intensification was achieved through the elimination of a concentration step which would be required by a dilution approach and through a reduction in buffer volumes required for dilution or denaturant removal. High-temperature treatment during solubilization may have also resulted in the denaturation and aggregation of undesired host-cell proteins, which could then be removed through a centrifugation step resulting in refolded cSAV of high purity without the need for column purification. Refolded cSAV was characterized by biotin-binding assay and SDS-PAGE, while purity was determined by RP-HPLC.
    Matched MeSH terms: Hot Temperature*
  4. Phung VLH, Oka K, Honda Y, Hijioka Y, Ueda K, Seposo XT, et al.
    Environ Res, 2023 Feb 01;218:114988.
    PMID: 36463996 DOI: 10.1016/j.envres.2022.114988
    BACKGROUND: Climate change and its subsequent effects on temperature have raised global public health concerns. Although numerous epidemiological studies have shown the adverse health effects of temperature, the association remains unclear for children aged below five years old and those in tropical climate regions.

    METHODS: We conducted a two-stage time-stratified case-crossover study to examine the association between temperature and under-five mortality, spanning the period from 2014 to 2018 across all six regions in Malaysia. In the first stage, we estimated region-specific temperature-mortality associations using a conditional Poisson regression and distributed lag nonlinear models. We used a multivariate meta-regression model to pool the region-specific estimates and examine the potential role of local characteristics in the association, which includes geographical information, demographics, socioeconomic status, long-term temperature metrics, and healthcare access by region.

    RESULTS: Temperature in Malaysia ranged from 22 °C to 31 °C, with a mean of 27.6 °C. No clear seasonality was observed in under-five mortality. We found no strong evidence of the association between temperature and under-five mortality, with an "M-" shaped exposure-response curve. The minimum mortality temperature (MMT) was identified at 27.1 °C. Among several local characteristics, only education level and hospital bed rates reduced the residual heterogeneity in the association. However, effect modification by these variables were not significant.

    CONCLUSION: This study suggests a null association between temperature and under-five mortality in Malaysia, which has a tropical climate. The "M-" shaped pattern suggests that under-fives may be vulnerable to temperature changes, even with a small temperature change in reference to the MMT. However, the weak risks with a large uncertainty at extreme temperatures remained inconclusive. Potential roles of education level and hospital bed rate were statistically inconclusive.

    Matched MeSH terms: Hot Temperature*
  5. Ishak AA, Selamat J, Sulaiman R, Sukor R, Abdulmalek E, Jambari NN
    Molecules, 2019 Oct 24;24(21).
    PMID: 31652883 DOI: 10.3390/molecules24213828
    The formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was investigated using a kinetic study approach as described by first-order, Arrhenius, and Eyring equations. Chemical model systems with different amino acid precursors (proline, phenylalanine, and glycine) were examined at different times (4, 8, 12, and 16 min) and temperatures (150, 180, 210, 240, and 270 °C). PhIP was detected using high-performance liquid chromatography equipped with fluorescence detector (HPLC-FLD). The good fit in first-order suggested that PhIP formation was influenced by the types of amino acids and PhIP concentration significantly increased with time and temperature (up to 240 °C). PhIP was detected in proline and phenylalanine model systems but not in the glycine model system. The phenylalanine model system demonstrated low activation energy (Ea) of 95.36 kJ/mol that resulted in a high rate of PhIP formation (great amount of PhIP formed). Based on the ∆S‡ values both proline and phenylalanine demonstrated bimolecular rate-limiting steps for PhIP formation. Altogether these kinetic results could provide valuable information in predicting the PhIP formation pathway.
    Matched MeSH terms: Hot Temperature*
  6. Bidawid S, Farber JM, Sattar SA, Hayward S
    J Food Prot, 2000 Apr;63(4):522-8.
    PMID: 10772219
    Experiments were performed to determine the thermal resistance of hepatitis A virus (HAV) in three types of dairy products containing increased amounts of fat content (skim milk, homogenized milk; 3.5% MFG, and table cream; 18% MFG). HAV-inoculated dairy products were introduced into custom-made U-shaped microcapillary tubes that in turn were simultaneously immersed in a waterbath, using custom-made floating boats and a carrying platform. Following exposure to the desired time and temperature combinations, the contents of each of the tubes was retrieved and was tested by plaque assay to determine the reduction in virus titer. Our data indicated that < 0.5 min at 85 degrees C was sufficient to cause a 5-log reduction in HAV titer in all three dairy products, whereas at 80 degrees C, < or = 0.68 min (for skim and homogenized milk), and 1.24 min (for cream) were needed to cause a similar log reduction. Using a nonlinear two-phase negative exponential model (two-compartment model) to analyze the data, it was found that at temperatures of 65, 67, 69, 71, and 75 degrees C, significantly (P < 0.05) higher exposure times were needed to achieve a 1-log reduction in virus titer in cream, as compared to skim and homogenized milk. For example, at 71 degrees C, a significantly (P < 0.05) higher exposure time of 0.52 min (for cream) was needed as compared to < or = 0.18 min (for skim and homogenized milk) to achieve a 1-log reduction in virus titer. A similar trend of inactivation was observed at 73 and 75 degrees C where significantly (P < 0.05) higher exposure times of 0.29 to 0.36 min for cream were needed to cause a 1-log reduction in HAV in cream, as compared to < or = 0.17 min for skim and homogenized milk. This study has provided information on the heat resistance of HAV in skim milk, homogenized milk, and table cream and demonstrated that an increase in fat content appears to play a protective role and contributes to the heat stability of HAV.
    Matched MeSH terms: Hot Temperature*
  7. Soleimani AF, Kasim A, Alimon AR, Zulkifli I
    Pak J Biol Sci, 2008 Sep 01;11(17):2163-6.
    PMID: 19266934
    A trial was conducted to determine the influence of short-term exposure to high ambient temperature at 28 and 35 days of age on deep body temperatures (Tb) and subsequent growth of birds until 42 days of age. A total of 90 day old chicks were reared in stainless steel battery cages and were assigned at random into 18 pens of 5 birds each, with 9 pens containing males and another 9 pens containing females. Three treatment groups, each represented by 3 male and 3 female pens, were represented by T1 without any heat exposure, T2 with heat exposure starting at day 28 and T3 with heat exposure starting at day 35. Heat stress was defined as 180 min exposure to 35 +/- 1 degrees C. Tb and body weights were measured at 35, 37 and 39 days of age immediately following heat exposure. Heat stress resulted in higher Tb and Onset of heat stress at 28 days resulted in significantly lower Tb than onset of heat stress at 35 days. Lower Tb in T2 than T3 permitted recovery in body weight at 42 days. Sexes responded similarly to heat stress.
    Matched MeSH terms: Hot Temperature*
  8. Nellis S, Thu M, Ismail MR, Barteit S, Gouwanda D, Bärnighausen T, et al.
    Lancet Planet Health, 2024 Apr;8 Suppl 1:S8.
    PMID: 38632923 DOI: 10.1016/S2542-5196(24)00073-1
    BACKGROUND: Heatwaves present health risks globally but there is limited evidence on how temperature perceptions affect activities. This study aimed to examine community perceptions of heat as a potential health hazard and ascertain the current heat protection measures of the residents of the South East Asia Community Observatory (SEACO) in Malaysia.

    METHODS: In this longitudinal study, we randomly selected community members aged between 18 and 70 years who resided in Segamat district of Johor state, Malaysia. Over 21 days, we conducted three home visits to each participant. During each visit, participants completed a questionnaire consisting of Likert scale, multiple choice, and free text questions and we collected quantitative and qualitative data. These inquiries assessed the participants' perception of heat as health threat, whether or not they took heat preventive measures, and the specific protective measures they routinely employed. Descriptive data analyses were conducted and patterns of protective measures were investigated.

    FINDINGS: Between March 29 and July 31, 2023, 120 participants (72 women and 48 men) completed 360 questionnaires over three home visits. Initially, 58% participants recognised heat hazards to daily activities, decreasing to 42% and 35% by visits 2 and 3. Participants took preventive measures throughout the day, which was consistently high between 1200 h and 1400 h, with 77% of participants taking preventive measures on visit 1, 82% on visit 2, and 82% on visit 3. Use of preventive measures was also high between 1400 h and 1730 h, with 77% using preventive measure on visit 1, 81% on visit 2, and 79% on visit 3. The most common protective measures were fans (used by 68-88% of participants), drinking more water (70-78% of participants), and resting (44-72% of participants). The least common were relocating to cooler places, removing clothes, and using wet towels (0-2·5%). Despite high temperatures, perceptions of heat risks decreased over time. Participants took basic protections, especially at midday, but improved literacy and affordable cooling options are needed to protect vulnerable rural populations.

    INTERPRETATION: Our findings underline the need to improve heat literacy and adaptation as only half of the population assessed perceived heat as a potential health hazard and practised limited heat protective measures. Addressing climate change and health necessitates fundamental behavioural changes on the part of individuals and communities, to protect them against the adverse effects of heat.

    FUNDING: Monash University Malaysia and Heidelberg Institute of Global Health, Heidelberg University.

    Matched MeSH terms: Hot Temperature*
  9. Gharehkhani S, Nouri-Borujerdi A, Kazi SN, Yarmand H
    ScientificWorldJournal, 2014;2014:504601.
    PMID: 25143981 DOI: 10.1155/2014/504601
    In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.
    Matched MeSH terms: Hot Temperature
  10. Gan CL, Hashim U
    Journal of electronic packaging, 2013 Jun;135(2):0210101-210107.
    PMID: 24891811
    Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t50) have been discussed in this paper.
    Matched MeSH terms: Hot Temperature
  11. Aziz NS, Mahmood MR, Yasui K, Hashim AM
    Nanoscale Res Lett, 2014 Feb 26;9(1):95.
    PMID: 24568668 DOI: 10.1186/1556-276X-9-95
    We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.
    Matched MeSH terms: Hot Temperature
  12. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2012;7(11):e49499.
    PMID: 23166688 DOI: 10.1371/journal.pone.0049499
    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
    Matched MeSH terms: Hot Temperature
  13. Naganthran K, Nazar R, Pop I
    Sci Rep, 2016;6:24632.
    PMID: 27091085 DOI: 10.1038/srep24632
    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.
    Matched MeSH terms: Hot Temperature
  14. Ahmadian A, Bilal M, Khan MA, Asjad MI
    Sci Rep, 2020 Oct 13;10(1):17088.
    PMID: 33051520 DOI: 10.1038/s41598-020-74096-8
    The main feature of the present numerical model is to explore the behavior of Maxwell nanoliquid moving within two horizontal rotating disks. The disks are stretchable and subjected to a magnetic field in axial direction. The time dependent characteristics of thermal conductivity have been considered to scrutinize the heat transfer phenomena. The thermophoresis and Brownian motion features of nanoliquid are studied with Buongiorno model. The lower and upper disk's rotation for both the cases, same direction as well as opposite direction of rotation is investigated. The subsequent arrangement of the three dimensional Navier Stoke's equations along with energy, mass and Maxwell equations are diminished to a dimensionless system of equations through the Von Karman's similarity framework. The comparative numerical arrangement of modeled equations is further set up by built-in numerical scheme "boundary value solver" (Bvp4c) and Runge Kutta fourth order method (RK4). The various physical constraints, such as Prandtl number, thermal conductivity, magnetic field, thermal radiation, time relaxation, Brownian motion and thermophoresis parameters and their impact are presented and discussed briefly for velocity, temperature, concentration and magnetic strength profiles. In the present analysis, some vital characteristics such as Nusselt and Sherwood numbers are considered for physical and numerical investigation. The outcomes concluded that the disk stretching action opposing the flow behavior. With the increases of magnetic field parameter [Formula: see text] the fluid velocity decreases, while improving its temperature. We show a good agreement of the present work by comparing with those published in literature.
    Matched MeSH terms: Hot Temperature
  15. Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, M Al-Oqla F
    Materials (Basel), 2019 Sep 17;12(18).
    PMID: 31533207 DOI: 10.3390/ma12183007
    Photovoltaic backsheets have considerable impact on the collective performance of solar cells. Material components should withstand certain temperatures and loads while maintaining high thermal stability under various weather conditions. Solar modules must demonstrate increased reliability, adequate performance, safety, and durability throughout the course of their lifetime. This work presents a novel solar module. The module consists of an innovative polyvinylidene fluoride-short sugar palm fiber (PVDF-SSPF) composite backsheet within its structure. It was electrically and thermally evaluated. The current-voltage characteristics (I-V) were obtained using the solar module analyzer, PROVA 210PV. A thermal evaluation was accomplished using a temperature device, SDL200. The thermal test consisted of two different assessments. The first targeted the surface and backsheet of the developed module to correlate their performance from within. The second assessment compared the thermal performance of the fabricated backsheet with the conventional one. Both tests were combined into a heatmap analysis to further understand the thermal performance. Results revealed that the developed module exhibited reasonable electrical efficiency, achieving appropriate and balanced I-V curves. PVDF-SSPF backsheets proved to be thermally stable by displaying less heat absorbance and better temperature shifts. Additional research efforts are highly encouraged to investigate other characteristics. To enhance performance, further analyses are needed such as the damp heat analysis, accelerated aging analysis, and heat dissipation phenomena.
    Matched MeSH terms: Hot Temperature
  16. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Hot Temperature
  17. Azmirul Ashaari, Tahir Ahmad, Wan Munirah Wan Mohamad
    MATEMATIKA, 2018;34(2):235-244.
    MyJurnal
    Pressurized water reactor (PWR) type AP1000 is a third generation of a nuclear
    power plant. The primary system of PWR using uranium dioxide to generate heat energy
    via fission process. The process influences temperature, pressure and pH value of water
    chemistry of the PWR. The aim of this paper is to transform the primary system of PWR
    using fuzzy autocatalytic set (FACS). In this work, the background of primary system
    of PWR and the properties of the model are provided. The simulation result, namely
    dynamic concentration of PWR is verified against published data.
    Matched MeSH terms: Hot Temperature
  18. Faheem M, Fizza G, Ashraf MW, Butt RA, Ngadi MA, Gungor VC
    Data Brief, 2021 Apr;35:106854.
    PMID: 33659599 DOI: 10.1016/j.dib.2021.106854
    Smart Grid Industry 4.0 (SGI4.0) defines a new paradigm to provide high-quality electricity at a low cost by reacting quickly and effectively to changing energy demands in the highly volatile global markets. However, in SGI4.0, the reliable and efficient gathering and transmission of the observed information from the Internet of Things (IoT)-enabled Cyber-physical systems, such as sensors located in remote places to the control center is the biggest challenge for the Industrial Multichannel Wireless Sensors Networks (IMWSNs). This is due to the harsh nature of the smart grid environment that causes high noise, signal fading, multipath effects, heat, and electromagnetic interference, which reduces the transmission quality and trigger errors in the IMWSNs. Thus, an efficient monitoring and real-time control of unexpected changes in the power generation and distribution processes is essential to guarantee the quality of service (QoS) requirements in the smart grid. In this context, this paper describes the dataset contains measurements acquired by the IMWSNs during events monitoring and control in the smart grid. This work provides an updated detail comparison of our proposed work, including channel detection, channel assignment, and packets forwarding algorithms, collectively called CARP [1] with existing G-RPL [2] and EQSHC [3] schemes in the smart grid. The experimental outcomes show that the dataset and is useful for the design, development, testing, and validation of algorithms for real-time events monitoring and control applications in the smart grid.
    Matched MeSH terms: Hot Temperature
  19. Soomro IA, Pedapati SR, Awang M
    Materials (Basel), 2021 Feb 08;14(4).
    PMID: 33567606 DOI: 10.3390/ma14040802
    Resistance spot welding (RSW) of dual phase (DP) steels is a challenging task due to formation of brittle martensitic structure in the fusion zone (FZ), resulting in a low energy capacity of the joint during high-rate loading. In the present study, in situ postweld heat treatment (PWHT) was carried out by employing a double pulse welding scheme with the aim of improving the mechanical performance of DP590 steel resistance spot weld joint. Taguchi method was used to optimize in situ PWHT parameters to obtain maximum peak load and failure energy. Experiments were designed based on orthogonal array (OA) L16. Mechanical performance was evaluated in terms of peak load and failure energy after performing low dynamic tensile shear (TS) test. Microstructural characterization was carried out using a scanning electron microscope (SEM). The results show that improvements of 17 and 86% in peak load and failure energy, respectively, were achieved in double-pulse welding (DPW) at optimum conditions compared to traditional single-pulse welding (SPW). The improvement in mechanical performance resulted from (i) enlargement of the FZ and (ii) improved weld toughness due to tempering of martensite in the FZ and subcritical heat affected zone (SCHAZ). These factors are influenced by heat input, which in turn depends upon in situ PWHT parameters.
    Matched MeSH terms: Hot Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links