Displaying publications 121 - 140 of 178 in total

Abstract:
Sort:
  1. Amosa MK, Jami MS, Alkhatib MF, Majozi T
    Environ Sci Pollut Res Int, 2016 Nov;23(22):22554-22567.
    PMID: 27557958
    This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system's operation consumed 37.13 Wh m(-3) of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8-1.0 kWh m(-3)) for such wastewater reclamation.
    Matched MeSH terms: Membranes, Artificial
  2. Bani-Melhem K, Elektorowicz M, Tawalbeh M, Al Bsoul A, El Gendy A, Kamyab H, et al.
    Chemosphere, 2023 Oct;339:139693.
    PMID: 37536541 DOI: 10.1016/j.chemosphere.2023.139693
    Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.
    Matched MeSH terms: Membranes, Artificial
  3. Muhamad MS, Salim MR, Lau WJ, Hadibarata T, Yusop Z
    Environ Technol, 2016 Aug;37(15):1959-69.
    PMID: 26729509 DOI: 10.1080/09593330.2015.1137359
    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.
    Matched MeSH terms: Membranes, Artificial*
  4. Yuzir A, Chelliapan S, Sallis PJ
    Bioresour Technol, 2012 Apr;109:31-7.
    PMID: 22318083 DOI: 10.1016/j.biortech.2012.01.038
    The degradation of (RS)-MCPP was investigated in an anaerobic membrane bioreactor (AnMBR) using nitrate as an available electron acceptor under different COD/NO(3)(-)-N ratios. Results showed high soluble COD removal efficiency (80-93%) when the reactor was operated at high COD/NO(3)(-)-N ratios. However, the COD removal started to decline (average 15%) at high nitrate concentrations coinciding with a drop in nitrate removal efficiency to 37%, suggesting that the denitrification activity dropped and affected the AnMBR performance when nitrate was the predominant electron acceptor. Additionally, the removal efficiency of (RS)-MCPP increased from 2% to 47% with reducing COD/NO(3)(-)-N ratios, whilst the (RS)-MCPP specific utilisation rate (SUR) was inversely proportional to the COD/NO(3)(-)-N ratio, suggesting that a lower COD/NO(3)(-)-N ratios had a positive influence on the (RS)-MCPP SUR. Although nitrate had a major impact on methane production rates, the methane composition was stable (approximately 80%) for COD/NO(3)(-)-N ratios of 23 or more.
    Matched MeSH terms: Membranes, Artificial*
  5. Ahmad AL, Low SC, Shukor SR, Ismail A
    J Immunoassay Immunochem, 2012 Jan;33(1):48-58.
    PMID: 22181820 DOI: 10.1080/15321819.2011.591479
    This study was aimed at gaining a quantitative understanding of the effect of protein quantity and membrane pore structure on protein immobilization. The concentration of immobilized protein was measured by staining with Ponceau S and measuring its color intensity. In this study, both membrane morphology and the quantity of deposited protein significantly influenced the quantity of protein immobilization on the membrane surface. The sharpness and intensity of the red protein spots varied depending on the membrane pore structure, indicating a dependence of protein immobilization on this factor. Membranes with smaller pores resulted in a higher color density, corresponding to enhanced protein immobilization and an increased assay sensitivity level. An increased of immobilized volume has a significant jagged outline on the protein spot but, conversely, no difference in binding capacity.
    Matched MeSH terms: Membranes, Artificial*
  6. Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:186-92.
    PMID: 25869419 DOI: 10.1016/j.ecoenv.2015.04.001
    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.
    Matched MeSH terms: Membranes, Artificial*
  7. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Membranes, Artificial*
  8. Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL
    Food Chem, 2021 Oct 01;358:129914.
    PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914
    A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
    Matched MeSH terms: Membranes, Artificial*
  9. Xu FX, Ooi CW, Liu BL, Song CP, Chiu CY, Wang CY, et al.
    Int J Biol Macromol, 2021 Jun 30;181:508-520.
    PMID: 33775766 DOI: 10.1016/j.ijbiomac.2021.03.151
    This study aimed to develop a novel electrospun polyacrylonitrile (PAN) nanofiber membrane with the enhanced antibacterial property. The PAN nanofiber membrane was first subjected to alkaline hydrolysis treatment, and the treated membrane was subsequently grafted with chitosan (CS) to obtain a CS-modified nanofiber membrane (P-COOH-CS). The modified membrane was then coupled with different dye molecules to form P-COOH-CS-Dye membranes. Lastly, poly(hexamethylene biguanide) hydrochloride (PHMB) was immobilized on the modified membrane to produce P-COOH-CS-Dye-PHMB. Physical characterization studies were conducted on all the synthesized nanofiber membranes. The antibacterial efficacies of nanofiber membranes prepared under different synthesis conditions were evaluated systematically. Under the optimum synthesis conditions, P-COOH-CS-Dye-PHMB was highly effective in disinfecting a high concentration of Escherichia coli, with an antibacterial efficacy of approximately 100%. Additionally, the P-COOH-CS-Dye-PHMB exhibited an outstanding wash durability as its antibacterial efficacy was only reduced in the range of 5%-7% even after 5 repeated cycles of treatment. Overall, the experimental results of this study suggested that the P-COOH-CS-Dye-PHMB is a promising antibacterial nanofiber membrane that can be adopted in the food, pharmaceutical, and textile industries.
    Matched MeSH terms: Membranes, Artificial*
  10. Aljumaily MM, Alsaadi MA, Binti Hashim NA, Mjalli FS, Alsalhy QF, Khan AL, et al.
    Biotechnol Prog, 2020 05;36(3):e2963.
    PMID: 31943942 DOI: 10.1002/btpr.2963
    To overcome the biofouling challenge which faces membrane water treatment processed, the novel superhydrophobic carbon nanomaterials impregnated on/powder activated carbon (CNMs/PAC) was utilized to successfully design prepare an antimicrobial membrane. The research was conducted following a systematic statistical design of experiments technique considering various parameters of composite membrane fabrication. The impact of these parameters of composite membrane on Staphylococcus aureus growth was investigated. The bacteria growth was analyzed through spectrophotometer and SEM. The effect of CNMs' hydrophobicity on the bacterial colonies revealed a decrease in the abundance of bacterial colonies and an alteration in structure with increasing the hydrophobicity. The results revealed that the optimum preparative conditions for carbon loading CNMs/PAC was 363.04 mg with a polymer concentration of 22.64 g/100 g, and a casting knife thickness of 133.91 μm. These conditions have resulted in decreasing the number of bacteria colonies to about 7.56 CFU. Our results provided a strong evidence on the antibacterial effect and consequently on the antibiofouling potential of CNMs/PAC in membrane.
    Matched MeSH terms: Membranes, Artificial*
  11. Hanifah SA, Heng LY, Ahmad M
    Anal Sci, 2009 Jun;25(6):779-84.
    PMID: 19531887
    Electrochemical biosensors for phenolic compound determination were developed by immobilization of tyrosinase enzyme in a series of methacrylic-acrylic based biosensor membranes deposited directly using a photocuring method. By modifying the hydrophilicity of the membranes using different proportions of 2-hydroxyethyl methacrylate (HEMA) and butyl acrylate (nBA), we developed biosensor membranes of different hydrophilic characters. The differences in hydrophilicity of these membranes led to changes in the sensitivity of the biosensors towards different phenolic compounds. In general biosensors constructed from the methacrylic-acrylic based membranes showed the poorest response to catechol relative to other phenolic compounds, which is in contrast to many other biosensors based on tyrosinase. The decrease in hydrophilicity of the membrane also allowed better selectivity towards chlorophenols. However, phenol biosensors constructed from the more hydrophilic membrane materials demonstrated better analytical performance towards phenol compared with those made from less hydrophilic ones. For the detection of phenols, these biosensors with different membranes gave detection limits of 0.13-0.25 microM and linear response range from 6.2-54.2 microM phenol. The phenol biosensors also showed good phenol recovery from landfill leachate samples (82-117%).
    Matched MeSH terms: Membranes, Artificial*
  12. Ng IS, Song CP, Ooi CW, Tey BT, Lee YH, Chang YK
    Int J Biol Macromol, 2019 Aug 01;134:458-468.
    PMID: 31078593 DOI: 10.1016/j.ijbiomac.2019.05.054
    Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
    Matched MeSH terms: Membranes, Artificial*
  13. Ujang Z, Abdul Rashid AH, Suboh SK, Halim AS, Lim CK
    J Appl Biomater Funct Mater, 2014 Dec 30;12(3):155-62.
    PMID: 24700269 DOI: 10.5301/jabfm.5000190
    BACKGROUND: The physical and biological characteristics of oligochitosan (O-C) film, including its barrier and mechanical properties, in vitro cytotoxicity and in vivo biocompatibility, were studied to assess its potential use as a wound dressing.

    METHODS: Membrane films were prepared from water-soluble O-C solution blended with various concentrations of glycerol to modify the physical properties of the films. In vitro and in vivo biocompatibility evaluations were performed using primary human skin fibroblast cultures and subcutaneous implantation in a rat model, respectively.

    RESULTS: Addition of glycerol significantly influenced the barrier and mechanical properties of the films. Water absorption capacity was in the range of 80%-160%, whereas water vapor transmission rate varied from 1,180 to 1,618 g/m2 per day. Both properties increased with increasing glycerol concentration. Tensile strength decreased while elongation at break increased with the addition of glycerol. O-C films were found to be noncytotoxic to human fibroblast cultures and histological examination proved that films are biocompatible.

    CONCLUSION: These results indicate that the membrane film from O-C has potential application as a wound-dressing material.

    Matched MeSH terms: Membranes, Artificial*
  14. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
    Matched MeSH terms: Membranes, Artificial*
  15. Yuzir A, Abdullah N, Chelliapan S, Sallis P
    Bioresour Technol, 2013 Apr;133:158-65.
    PMID: 23422308 DOI: 10.1016/j.biortech.2013.01.086
    The effects of Mecoprop (RS)-MCPP were investigated in an anaerobic membrane bioreactor (AnMBr) fed with synthetic wastewater containing stepwise increases in Mecoprop concentration, 5-200 mg L(-1) over 240 days. Effects were observed in terms of soluble chemical oxygen demand (COD) removal efficiency, volatile fatty acid (VFA) production, and methane yield. Soluble COD removal efficiency was stable at Mecoprop concentrations below 200 (±3) mg L(-1), with an average of 98 (±0.7)% removal. However, at 200 (±3) mg L(-1) Mecoprop, the COD removal efficiency decreased gradually to 94 (±1.5)%. At 5 mg L(-1) Mecoprop, acetic and propionic acid concentrations increased by 60% and 160%, respectively. In contrast, when Mecoprop was increased to 200 (±3) mg L(-1), the formation and degradation of acetate was unaffected by the higher Mecoprop concentration, acetate remaining below 35 mg L(-1). Increases in the Mecoprop specific utilization rate were observed as Mecoprop was increased stepwise between 5 and 200 mg L(-1).
    Matched MeSH terms: Membranes, Artificial*
  16. Sairi M, Arrigan DW
    Talanta, 2015 Jan;132:205-14.
    PMID: 25476299 DOI: 10.1016/j.talanta.2014.08.060
    The behaviour of protonated ractopamine (RacH(+)) at an array of micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) was investigated via cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV). The micro-ITIES array was formed at silicon membranes containing 30 pores of radius 11.09±0.12 µm and pore centre-to-centre separation of 18.4±2.1 times the pore radius. CV shows that RacH(+) transferred across the water |1,6-dichlorohexane µITIES array at a very positive applied potential, close to the upper limit of the potential window. Nevertheless, CV was used in the estimation of some of the drug's thermodynamic parameters, such as the formal transfer potential and the Gibbs transfer energy. LSSV was implemented by pre-concentration of the drug, into the organic phase, followed by voltammetric detection, based on the back-transfer of RacH(+) from the organic to aqueous phase. Under optimised pre-concentration and detection conditions, a limit of detection of 0.1 µM was achieved. In addition, the impact of substances such as sugar, ascorbic acid, metal ions, amino acid and urea on RacH(+) detection was assessed. The detection of RacH(+) in artificial serum indicated that the presence of serum protein interferes in the detection signal, so that sample deproteinisation is required for feasible bioanalytical applications.
    Matched MeSH terms: Membranes, Artificial
  17. Tan CH, Show PL, Ooi CW, Ng EP, Lan JC, Ling TC
    Biotechnol J, 2015 Jan;10(1):31-44.
    PMID: 25273633 DOI: 10.1002/biot.201400301
    Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided.
    Matched MeSH terms: Membranes, Artificial
  18. Rezayi M, Karazhian R, Abdollahi Y, Narimani L, Sany SB, Ahmadzadeh S, et al.
    Sci Rep, 2014;4:4664.
    PMID: 24722576 DOI: 10.1038/srep04664
    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10(-6)-1.0 × 10(-2) M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.
    Matched MeSH terms: Membranes, Artificial
  19. Saravanan P, Ramakrishnan T, Ambalavanan N, Emmadi P, John TL
    J Oral Implantol, 2013 Aug;39(4):455-62.
    PMID: 23964779 DOI: 10.1563/AAID-JOI-D-10-00211
    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients.
    Matched MeSH terms: Membranes, Artificial
  20. Isa IM, Mustafar S, Ahmad M, Hashim N, Ghani SA
    Talanta, 2011 Dec 15;87:230-4.
    PMID: 22099672 DOI: 10.1016/j.talanta.2011.10.002
    A new cobalt(II) ion selective electrode based on palladium(II) dichloro acetylthiophene fenchone azine(I) has been developed. The best membrane composition is found to be 10:60:10:21.1 (I)/PVC/NaTPB/DOP (w/w). The electrode exhibits a Nerstian response in the range of 1.0 × 10(-1)-1.0 × 10(-6)M with a detection limit and slope of 8.0 × 10(-7)M and 29.6 ± 0.2 mV per decade respectively. The response time is within the range of 20-25s and can be used for a period of up to 4 months. The electrode developed reveals good selectivity for cobalt(II) and could be used in pH range of 3-7. The electrode has been successfully used in the determination of cobalt(II) in water samples.
    Matched MeSH terms: Membranes, Artificial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links