Displaying publications 121 - 140 of 188 in total

Abstract:
Sort:
  1. Chow YH, Yap YJ, Anuar MS, Tejo BA, Ariff A, Show PL, et al.
    PMID: 23911538 DOI: 10.1016/j.jchromb.2013.06.034
    A relationship is proposed for the interfacial partitioning of protein in poly(ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS). The relationship relates the natural logarithm of interfacial partition coefficient, ln G to the PEG concentration difference between the top and bottom phases, Δ[PEG], with the equation ln G=AΔ[PEG]+B. Results showed that this relationship provides good fits to the partition of bovine serum albumin (BSA) in ATPS which is comprised of phosphate and PEG of four different molecular weight 1450g/mol, 2000g/mol, 3350g/mol and 4000g/mol, with the tie-line length (TLL) in the range of 44-60% (w/w) at pH 7.0. The decrease of A values with the increase of PEG molecular weight indicates that the correlation between ln G and Δ[PEG] decreases with the increase in PEG molecular weight and the presence of protein-polymer hydrophobic interaction. When temperature was increased, a non-linear relationship of ln G inversely proportional to temperature was observed. The amount of proteins adsorbed at the interface increased proportionally with the amount of BSA loaded whereas the partition coefficient, K remained relatively constant. The relationship proposed could be applied to elucidate interfacial partitioning behaviour of other biomolecules in polymer-salt ATPS.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  2. Md Sidek NL, Tan JS, Abbasiliasi S, Wong FW, Mustafa S, Ariff AB
    PMID: 27262666 DOI: 10.1016/j.jchromb.2016.05.024
    An aqueous two-phase flotation (ATPF) system based on polyethylene glycol (PEG) and sodium citrate (NaNO3C6H5O7·2H2O) was considered for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10. The effects of ATPF parameters namely phase composition, tie-line length (TLL), volume ratio between the two phases (VR), amount of crude load (CL), pH, nitrogen gas flow rate (FR) and flotation time (FT) on the performance of recovery were evaluated. BLIS was mainly concentrated into the upper PEG-rich phase in all systems tested so far. The optimum conditions for BLIS purification, which composed of PEG 8000/sodium citrate, were: TLL of 42.6, VR of 0.4, CL of 22% (w/w), pH 7, average FT of 30min and FR of 20mL/min. BLIS was partially purified up to 5.9-fold with a separation efficiency of 99% under this optimal conditions. A maximum yield of BLIS activity of about 70.3% was recovered in the PEG phase. The BLIS from the top phase was successfully recovered with a single band in SDS-gel with molecular weight of about 10-15kDa. ATPF was found to be an effective technique for the recovery of BLIS from the fermentation broth of P. acidilactici Kp10.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  3. Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, et al.
    PMID: 27836491 DOI: 10.1016/j.jchromb.2016.10.037
    This report shows the partitioning and purification of alkaline extracellular lipase from Penicillium candidum (PCA 1/TT031) by solid-state fermentation (SSF). In the present analysis, some of the important parameters such as PEG concentration, PEG molecular mass, salt concentration and buffer concentration were optimised through the response surface methodology (RSM). The optimum aqueous two-phase systems (ATPS) environment consisted of 13.8% (w/w) phosphate buffer, 9.2% (w/w) PEG-3000 and 3.3% (w/w) NaCl at 25°C. The RSM approach was proved to be the most suitable methodology for the recovery of desired enzymes. In this method, the enzyme partitioned into the top phase of the PEG-buffer-NaCl ATPS. Under this experimental environment, the purification factor was found to be 33.9, the partition coefficient was 4.0 and the yield was found to be 84.0% of lipase. Moreover, the experimental and predicted results were in considerable agreement, which established the reliability and validity of the proposed model. The ATPS methodology is proven to be effective for the primary recovery of lipase at a low cost with a large loading capacity and possibility of linear scale up. In addition to using the existing methodologies for improving enzyme production, the use of statistical optimisation of the constituents of phases through RSM continues to be the basic and practical method.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  4. Koupaei Malek S, Gabris MA, Hadi Jume B, Baradaran R, Aziz M, Karim KJBA, et al.
    Daru, 2019 Jun;27(1):9-20.
    PMID: 30554368 DOI: 10.1007/s40199-018-0232-2
    Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property. Graphical Abstract ᅟ.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  5. Mehrnoush A, Sarker MZ, Mustafa S, Yazid AM
    Molecules, 2011 Oct 10;16(10):8419-27.
    PMID: 21986520 DOI: 10.3390/molecules16108419
    An Aqueous Two-Phase System (ATPS) was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000-10,000), potassium phosphate composition (12-20%, w/w), system pH (6-9), and addition of different concentrations of neutral salts (0-8%, w/w) on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w) NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%). Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.
    Matched MeSH terms: Polyethylene Glycols
  6. Young G, Collins PW, Colberg T, Chuansumrit A, Hanabusa H, Lentz SR, et al.
    Thromb Res, 2016 May;141:69-76.
    PMID: 26970716 DOI: 10.1016/j.thromres.2016.02.030
    INTRODUCTION: Paradigm™4 was an international extension trial investigating the safety and efficacy of nonacog beta pegol, a recombinant glycoPEGylated factor IX (FIX) with extended half-life, in haemophilia B patients (FIX activity ≤2%; aged 13-70years) who had previously participated in phase III pivotal (paradigm™2) or surgery (paradigm™3) trials.

    METHODS: Patients chose to continue treatment with nonacog beta pegol in either one of two once-weekly prophylaxis arms (10IU/kg or 40IU/kg), or an on-demand arm (40IU/kg for mild/moderate bleeds; 80IU/kg for severe bleeds). The primary objective was to evaluate immunogenicity; key secondary objectives included assessing safety and haemostatic efficacy in the treatment and prevention of bleeds.

    RESULTS: Seventy-one patients received prophylaxis or on-demand treatment. No patient developed an inhibitor and no safety concerns were identified. The success rate for the treatment of reported bleeds was 94.6%; most (87.9%) resolved with one injection. The median annualised bleeding rate for patients on prophylaxis was 1.36 (interquartile range [IQR] 0.00-2.23) and 1.00 (IQR 0.00-2.03) for the 10 and 40IU/kg treatment arms, respectively. The mean FIX activity trough achieved for 10 and 40IU once weekly was 9.8% and 21.3%, respectively. Fourteen patients on prophylaxis underwent 23 minor surgical procedures; haemostatic perioperative outcomes for all of those evaluated were 'excellent' or 'good'.

    CONCLUSIONS: Nonacog beta pegol showed a favourable tolerability profile (with no safety issues identified) with good prophylactic protection and control of bleeding in previously treated adult and adolescent haemophilia B patients.

    Matched MeSH terms: Polyethylene Glycols/administration & dosage; Polyethylene Glycols/adverse effects; Polyethylene Glycols/therapeutic use*
  7. Lazim ZM, Hadibarata T
    Braz J Microbiol, 2016 Jul-Sep;47(3):610-6.
    PMID: 27287336 DOI: 10.1016/j.bjm.2016.04.015
    This study aimed to investigate the impact of nonionic surfactants on the efficacy of fluorine degradation by Polyporus sp. S133 in a liquid culture. Fluorene was observed to be degraded in its entirety by Polyporus sp. S133 subsequent to a 23-day incubation period. The fastest cell growth rate was observed in the initial 7 days in the culture that was supplemented with Tween 80. The degradation process was primarily modulated by the activity of two ligninolytic enzymes, laccase and MnP. The highest laccase activity was stimulated by the addition of Tween 80 (2443U/L) followed by mixed surfactant (1766U/L) and Brij 35 (1655U/L). UV-vis spectroscopy, TLC analysis and mass spectrum analysis of samples subsequent to the degradation process in the culture medium confirmed the biotransformation of fluorene. Two metabolites, 9-fluorenol (λmax 270, tR 8.0min and m/z 254) and protocatechuic acid (λmax 260, tR 11.3min and m/z 370), were identified in the treated medium.
    Matched MeSH terms: Polyethylene Glycols
  8. Yeh CC, Muduli S, Peng IC, Lu YT, Ling QD, Alarfaj AA, et al.
    Data Brief, 2016 Mar;6:603-8.
    PMID: 26909373 DOI: 10.1016/j.dib.2015.12.056
    This data article contains two figures and one table supporting the research article entitled: "Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surface" [1]. The table shows coating conditions of three copolymers, poly(styrene-co-acrylic acid) grafted with oligovitronectin, poly(styrene-co-N-isopropylacrylamide) and poly(styrene-co-polyethylene glycol methacrylate) to prepare thermoresponsive surface. XPS spectra show the nitrogen peak of the polystyrene surface coated with poly(styrene-co-acrylic acid) grafted with oligovitronectin. The surface coating density analyzed from sorption of poly(styrene-co-acrylic acid) grafted with oligovitronectin by UV-vis spectroscopy is also presented.
    Matched MeSH terms: Polyethylene Glycols
  9. Lin YK, Show PL, Yap YJ, Tan CP, Ng EP, Ariff AB, et al.
    J Biosci Bioeng, 2015 Dec;120(6):684-9.
    PMID: 26111602 DOI: 10.1016/j.jbiosc.2015.04.013
    Purification of cyclodextrin glycosyl transferase (CGTase) from Bacillus cereus using polyethylene glycol (PEG)-potassium phosphates aqueous two-phase flotation (ATPF) system was studied in this paper. The effects of varying PEG molecular weight, tie-line length (TLL) value, volume ratio (VR), pH value, crude concentration and gas nitrogen flotation time were investigated. The optimal condition for purification of CGTase was attained at 18.0% (w/w) PEG 8000, 7.0% (w/w) potassium phosphates, VR of 3.0, 20% (w/w) crude load at pH 7, and 80 min nitrogen flotation time at a flow rate of 5 L/min. With this optimal condition, purification factor (PFT) of 21.8 and a yield (YT) of 97.1% were attained. CGTase was successfully purified in a single downstream processing step using the ATPF.
    Matched MeSH terms: Polyethylene Glycols
  10. Lim YY, Lim KH
    J Colloid Interface Sci, 1997 Dec 01;196(1):116-9.
    PMID: 9441659
    Micellar properties of binary mixed surfactants of a surface active mixed copper(II) chelate, [Cu(C12-tmed)(acac)Cl] (where C12-tmed is N,N,N'-trimethyl-N'-dodecylethylenediamine) with three common surfactants, viz. sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monododecyl ether (C12E8), were investigated by surface tensiometry, ESR, and UV-visible absorption techniques. The surface tension data were treated with Rubingh's method for mixed micelle formation and Rosen's method for mixed monolayer formation at the aqueous solution/air interface. It was found that in the mixed micelle there is strong attractive interaction between cationic copper surfactant and anonic dodecyl sulfate while there is almost ideal mixing between copper surfactant and CTAB and C12E8. From the ESR and UV-visible studies, a mixed block-type arrangement of head groups is proposed. Copyright 1997 Academic Press. Copyright 1997Academic Press
    Matched MeSH terms: Polyethylene Glycols
  11. Al-Hazeem NZ, Ahmed NM
    ACS Omega, 2020 Sep 08;5(35):22389-22394.
    PMID: 32923796 DOI: 10.1021/acsomega.0c02802
    For the first time, the fabrication of novel nanorods by the addition of polyaniline (PANI) to polyethylene oxide (PEO) and polyvinyl alcohol (PVA) polymers through electrospinning method is investigated. Field emission scanning electron microscopy observations reveal the formation of nanofibers and nanorods having diameters in the range of 26.87-139.90 nm and 64.11-122.40 nm, respectively, and lengths in the range of 542.10 nm to 1.32 μm. Photoluminescence (PL) analysis shows the presence of peaks which are characteristic of isotactic polymers (363-412, 529-691 nm), 412-529 nm for PVA/PEO and 363-691 nm for PVA/PEO/PANI. PL spectra also show peak bonding at a wavelength of 552 nm. Manufacture of nanorods by electrospinning method gives better options for controlling the diameter and length of nanorods.
    Matched MeSH terms: Polyethylene Glycols
  12. Choo YSL, Giamberini M, Antonio J, Waddell PG, Benniston AC
    Org Biomol Chem, 2020 Nov 04;18(42):8735-8745.
    PMID: 33094783 DOI: 10.1039/d0ob01533d
    The reaction of diethyl 2,5-bis(tert-butyl)phenoxy-3,6-dihydroxyterephthalate (1) with tetraethylene glycol di(p-toluenesulfonate) under high-dilution conditions afforded several isolated products. Two products were identified as macrocycles with one being the 1 + 1 crown ether derivative 3 (10% yield), and the second being the 2 + 2 crown ether compound D3 (19% yield). The X-ray structure for 3 was determined with the asymmetric unit observed to comprise half of the molecule. The small crown ether ring of 3 interacts with K+ or H+ ions in MeOH, but binding is weak and the macrocyclic cavity is too small to fully encapsulate the K+ ion. Transesterification of compounds 1, its methylated version 2 and 3 with diols such as ethylene glycol or 1,4-butandiol produced monomers (M1-M3) which were reacted with terephthaloyl chloride. Short oligomers were produced (PolyM1-PolyM3) rather than extensive polymeric materials and all displayed solid state fluorescence. The absorption and fluorescence properties of M1-M2 and their polymers can be related to subtle structural changes. The Stokes shift for M2 of 15 627 cm-1 in DCM is one of the largest observed for a simple organic chromophore in fluid solution.
    Matched MeSH terms: Polyethylene Glycols
  13. Barambu NU, Bilad MR, Bustam MA, Huda N, Jaafar J, Narkkun T, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33137888 DOI: 10.3390/polym12112519
    The discharge of improperly treated oil/water emulsion by industries imposes detrimental effects on human health and the environment. The membrane process is a promising technology for oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane fouling. It occurs as a result of the strong interaction between the hydrophobic oil droplets and the hydrophobic membrane surface. This issue has attracted research interest in developing the membrane material that possesses high hydraulic and fouling resistance performances. This research explores the vapor-induced phase separation (VIPS) method for the fabrication of a hydrophilic polysulfone (PSF) membrane with the presence of polyethylene glycol (PEG) as the additive for the treatment of oil/water emulsion. Results show that the slow nonsolvent intake in VIPS greatly influences the resulting membrane structure that allows the higher retention of the additive within the membrane matrix. By extending the exposure time of the cast film under humid air, both surface chemistry and morphology of the resulting membrane can be enhanced. By extending the exposure time from 0 to 60 s, the water contact angle decreases from 70.28 ± 0.61° to 57.72 ± 0.61°, and the clean water permeability increases from 328.70 ± 8.27 to 501.89 ± 8.92 (L·m-2·h-1·bar-1). Moreover, the oil rejection also improves from 85.06 ± 1.6 to 98.48 ± 1.2%. The membrane structure was transformed from a porous top layer with a finger-like macrovoid sub-structure to a relatively thick top layer with a sponge-like macrovoid-free sub-structure. Overall results demonstrate the potential of the VIPS process to enhance both surface chemistry and morphology of the PSF membrane.
    Matched MeSH terms: Polyethylene Glycols
  14. Maniam G, Mai CW, Zulkefeli M, Fu JY
    Nanomedicine (Lond), 2021 02;16(5):373-389.
    PMID: 33543651 DOI: 10.2217/nnm-2020-0374
    Aim: To synthesize niosomes co-encapsulating gemcitabine (GEM) and tocotrienols, and physicochemically characterize and evaluate the antipancreatic effects of the nanoformulation on Panc 10.05, SW 1990, AsPC-1 and BxPC-3 cells. Materials & methods: Niosomes-entrapping GEM and tocotrienols composed of Span 60, cholesterol and D-α-tocopheryl polyethylene glycol 1000 succinate were produced by Handjani-Vila and film hydration methods. Results: The film hydration produced vesicles measuring 161.9 ± 0.5 nm, approximately 50% smaller in size than Handjani-Vila method, with maximum entrapment efficiencies of 20.07 ± 0.22% for GEM and 34.52 ± 0.10% for tocotrienols. In Panc 10.05 cells, GEM's antiproliferative effect was enhanced 2.78-fold in combination with tocotrienols. Niosomes produced a significant ninefold enhancement in cytotoxicity of the combination, supported by significantly higher cellular uptake of GEM in the cells. Conclusion: This study is a proof of concept on the synthesis of dual-drug niosomes and their efficacy on pancreatic cancer cells in vitro.
    Matched MeSH terms: Polyethylene Glycols
  15. Zahib IR, Md Tahir P, Talib M, Mohamad R, Alias AH, Lee SH
    Carbohydr Polym, 2021 Jan 15;252:117224.
    PMID: 33183648 DOI: 10.1016/j.carbpol.2020.117224
    Carboxymethyl starch (CMS) was produced from sago starch via carboxymethylation. The CMS with different degree of substitution (DS) ranges from 0.4 to 0.8 were mixed with polyethylene glycol (PEG) of different molecular weight and distilled water and the hydrogel was cured by electron beam irradiation with doses ranging from 25 to 35 kGy. The results revealed that CMS-PEG hydrogels with DS 0.4 give the optimum gel content when radiated at 30 kGy and with PEG 600. Thermogravimetric analysis (TGA) revealed that there are two phases exist in CMS with DS 0.4 in contrast to the three steps decomposition occurs in DS 0.6 and 0.8. It shows that the CMS with DS 0.4 is more thermally stable. Surface morphology revealed crosslinking among the blends when subjected into the radiation dose. The study shows both radiation and PEG addition improved most of the properties of CMS irrespective of the DS value.
    Matched MeSH terms: Polyethylene Glycols
  16. Abdul Aziz NFH, Abbasiliasi S, Ng ZJ, Abu Zarin M, Oslan SN, Tan JS, et al.
    Molecules, 2020 Nov 16;25(22).
    PMID: 33207534 DOI: 10.3390/molecules25225332
    Lactobacillus bulgaricus is a LAB strain which is capable of producing bacteriocin substances to inhibit Staphylococcus aureus. The aim of this study was to purify a bacteriocin-like inhibitory substance (BLIS) produced by L. bulgaricus FTDC 1211 using an aqueous impregnated resins system consisting of polyethylene-glycol (PEG) impregnated on Amberlite XAD4. Important parameters influencing on purification of BLIS, such as the molecular weight and concentration of PEG, the concentration and pH of sodium citrate and the concentration of sodium chloride, were optimized using a response surface methodology. Under optimum conditions of 11% (w/w) of PEG 4000 impregnated Amberlite XAD4 resins and 2% (w/w) of sodium citrate at pH 6, the maximum purification factor (3.26) and recovery yield (82.69% ± 0.06) were obtained. These results demonstrate that AIRS could be used as an alternate purification system in the primary recovery step.
    Matched MeSH terms: Polyethylene Glycols
  17. Abdul Halim SI, Chan CH, Kressler J
    Polymers (Basel), 2020 Dec 11;12(12).
    PMID: 33322501 DOI: 10.3390/polym12122963
    The studies of phase behavior, dielectric relaxation, and other properties of poly(ethylene oxide) (PEO)/poly(methyl acrylate) (PMA) blends with the addition of lithium perchlorate (LiClO4) were done for different blend compositions. Samples were prepared by a solution casting technique. The binary PEO/PMA blends exhibit a single and compositional-dependent glass transition temperature (Tg), which is also true for ternary mixtures of PEO/PMA/LiClO4 when PEO was in excess with low content of salt. These may indicate miscibility of the constituents for the molten systems and amorphous domains of the systems at room temperature from the macroscopic point of view. Subsequently, the morphology of PEO/PMA blends with or without salt are correlated to the phase behavior of the systems. Phase morphology and molecular interaction of polymer chains by salt ions of the systems may rule the dielectric or electric relaxation at room temperature, which was estimated using electrochemical impedance spectroscopy (EIS). The frequency-dependent impedance spectra are of interest for the elucidation of polarization and relaxation of the charged entities for the systems. Relaxation can be noted only when a sufficient amount of salt is added into the systems.
    Matched MeSH terms: Polyethylene Glycols
  18. Muhammed DS, Brza MA, M Nofal M, B Aziz S, A Hussen S, Abdulwahid RT
    Materials (Basel), 2020 Jul 03;13(13).
    PMID: 32635317 DOI: 10.3390/ma13132979
    The structure and optical properties of polyethylene oxide (PEO) doped with tin titanate (SnTiO3) nano-filler were studied by X-ray diffraction (XRD) and UV-Vis spectroscopy as non-destructive techniques. PEO-based composed polymer electrolytes inserted with SnTiO3 nano-particles (NPs) were synthesized through the solution cast technique. The change from crystalline phase to amorphous phase of the host polymer was established by the lowering of the intensity and broadening of the crystalline peaks. The optical constants of PEO/SnTiO3 nano-composite (NC), such as, refractive index (n), optical absorption coefficient (α), dielectric loss (εi), as well as dielectric constant (εr) were determined for pure PEO and PEO/SnTiO3 NC. From these findings, the value of n of PEO altered from 2.13 to 2.47 upon the addition of 4 wt.% SnTiO3NPs. The value of εr also increased from 4.5 to 6.3, with addition of 4 wt.% SnTiO3. The fundamental optical absorption edge of the PEO shifted toward lower photon energy upon the addition of the SnTiO3 NPs, confirming a decrement in the optical band gap energy of PEO. The band gap shifted from 4.78 eV to 4.612 eV for PEO-doped with 4 wt.% SnTiO3. The nature of electronic transitions in the pure and the composite material were studied on the basis of Tauc's model, while optical εi examination was also carried out to calculate the optical band gap.
    Matched MeSH terms: Polyethylene Glycols
  19. Hoe, Phua Choo Kwai, Khairuddin Abdul Rahim, Ahmad Nazrul Abd Wahid
    MyJurnal
    Development of biofertilizer seed treatments for okra seeds were carried out by mixing phosphate
    solubilising bacteria (AP 3) and plant growth promoter (AP 2) with adhesives. The seeds were
    coated with inoculums and four types of adhesives namely, Gum Arabic; Polyethylene Glycol
    (PEG); Sodium Alginate and Methycellulose respectively. From eight seed treatments, all seed
    treatments significantly increased seed germinations except treatment T4 (Gum Arabic and AP3).
    In general, maximum germination rates and log of viable cells were observed when treated with
    polyethylene glycol 4000 (PEG) mixed with AP2 (T7) and AP3 (T8). These results show that using
    PEG as adhesive enhanced the germination rates and log of viable cells of AP2 and AP3. Thus,
    PEG could be a good adhesive for seed treatment. In greenhouse experiment, okra seeds treatment
    with AP2 and PEG (T1) showed the highest dry weight compared to other treatments. Seeds
    treatment with AP3 and PEG (T2) showed higher contribution of N compare to seeds treatment
    (T1). There were no significant different within seed treatments and urea treatment in okra yield.
    All treatments significantly increased yields compared with control
    Matched MeSH terms: Polyethylene Glycols
  20. Escobar MA, Tehranchi R, Karim FA, Caliskan U, Chowdary P, Colberg T, et al.
    Haemophilia, 2017 Jan;23(1):67-76.
    PMID: 27480487 DOI: 10.1111/hae.13041
    INTRODUCTION: Surgery in patients with haemophilia B carries a high risk of excessive bleeding and requires adequate haemostatic control until wound healing. Nonacog beta pegol, a long-acting recombinant glycoPEGylated factor IX (FIX), was used in the perioperative management of patients undergoing major surgery.
    AIM: To evaluate the efficacy and safety of nonacog beta pegol in patients with haemophilia B who undergo major surgery.
    METHODS: This was an open-label, multicentre, non-controlled surgery trial aimed at assessing peri- and postoperative efficacy and safety of nonacog beta pegol in 13 previously treated patients with haemophilia B. All patients received a preoperative nonacog beta pegol bolus injection of 80 IU kg-1 . Postoperatively, the patients received fixed nonacog beta pegol doses of 40 IU kg-1 , repeated at the investigator's discretion. Safety assessments included monitoring of immunogenicity and adverse events.
    RESULTS: Intraoperative haemostatic effect was rated 'excellent' or 'good' in all 13 cases. Apart from the preoperative injection, none of the patients needed additional doses of nonacog beta pegol on the day of surgery. The median number of postoperative doses of nonacog beta pegol was 2.0 from days 1 to 6 and 1.5 from days 7 to 13. No unexpected intra- or postoperative complications were observed including deaths or thromboembolic events. No patients developed inhibitors.
    CONCLUSIONS: These results indicated that nonacog beta pegol was safe and effective in the perioperative setting, allowing major surgical interventions in patients with haemophilia B with minimal peri- and postoperative concentrate consumption and infrequent injections as reported with standard FIX products.
    KEYWORDS: Phase III; factor IX; haemophilia B; long-acting recombinant factor IX; nonacog beta pegol; surgery
    Matched MeSH terms: Polyethylene Glycols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links