Displaying publications 121 - 140 of 320 in total

Abstract:
Sort:
  1. Lau YL, Ismail IB, Mustapa NIB, Lai MY, Tuan Soh TS, Haji Hassan A, et al.
    PLoS One, 2021;16(1):e0245164.
    PMID: 33406112 DOI: 10.1371/journal.pone.0245164
    Rapid diagnosis is an important intervention in managing the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak. Real time reverse transcription polymerase chain reaction (RT-qPCR) remains the primary means for diagnosing the new virus strain but it is time consuming and costly. Recombinase polymerase amplification (RPA) is an isothermal amplification assay that does not require a PCR machine. It is an affordable, rapid, and simple assay. In this study, we developed and optimized a sensitive reverse transcription (RT)-RPA assay for the rapid detection of SARS-CoV-2 using SYBR Green I and/or lateral flow (LF) strip. The analytical sensitivity and specificity of the RT-RPA assay were tested by using 10-fold serial diluted synthetic RNA and genomic RNA of similar viruses, respectively. Clinical sensitivity and specificity of the RT-RPA assay were carried out using 78 positive and 35 negative nasopharyngeal samples. The detection limit of both RPA and RT-qPCR assays was 7.659 and 5 copies/μL RNA, respectively with no cross reactivity with other viruses. The clinical sensitivity and specificity of RT-RPA were 98% and 100%, respectively. Our study showed that RT-RPA represents a viable alternative to RT-qPCR for the detection of SARS-CoV-2, especially in areas with limited infrastructure.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  2. Salleh SA, Hussin S, Rahman MM
    Pak J Biol Sci, 2008 Jul 01;11(13):1728-32.
    PMID: 18819627
    The aim of the present study is rapid detection of tuberculosis from pleural effusion of suspected patients. Molecular technique Nested Polymerase Chain Reaction (PCR) was used for the purpose. A total of 67 pleural fluid collected at Hospital University Kebangsaan Malaysia during May 2005 to October 2006 were sent to Microbiology Laboratory enrolled in the study. Detection rate of Mycobacterium tuberculosis in pleural effusion was 0% by acid-fast bacilli (AFB) staining and 1.5% by culture on Lowenstein-Jensen medium. Mycobacterium tuberculosis was detected by PCR in 9% of the cases. PCR of pleural fluid had 19% sensitivity and 96% specificity, compared to AFB staining (0% sensitivity and 100% specificity) and culture (4% sensitivity and 100% specificity). PCR also has 67% Positive Predictive Value (PPV) and 72% Negative Predictive Value (NPV) in detecting Mycobacterium tuberculosis. Culture ofpleural fluid has 100% PPV and 71% NPV while AFB staining has 0% PPV and 31% NPV. This preliminary study showed that PCR is a rapid method for detection of Mycobacterium tuberculosis in pleural fluid but its sensitivity is not up the marked.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  3. Perera D, Shimizu H, Yoshida H, Tu PV, Ishiko H, McMinn PC, et al.
    J Med Virol, 2010 Apr;82(4):649-57.
    PMID: 20166171 DOI: 10.1002/jmv.21652
    The VP4, VP2, and VP1 gene regions were evaluated for their usefulness in typing human enteroviruses. Three published RT-PCR primers sets targeting separately these three gene regions were used. Initially, from a total of 86 field isolates (36 HEV-A, 40 HEV-B, and 10 HEV-C) tested, 100% concordance in HEV-A was identified from all three gene regions (VP4, VP2, and VP1). However, for HEV-B and HEV-C viruses, only the VP2 and VP1 regions, and not VP4, showed 100% concordance in typing these viruses. To evaluate further the usefulness of VP4 in typing HEV-A enteroviruses, 55 Japanese and 203 published paired VP4 and VP1 nucleotide sequences were also examined. In each case, typing by VP4 was 100% in concordance with typing using VP1. Given these results, it is proposed that for HEV-A enteroviruses, all three gene regions (VP4, VP2, and VP1), would be useful for typing these viruses. These options would enhance the capability of laboratories in identifying these viruses and would greatly help in outbreaks of hand, foot, and mouth disease.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  4. Lee FCH, Sitam FT, Tan LP
    J Virol Methods, 2025 Feb;332:115074.
    PMID: 39580121 DOI: 10.1016/j.jviromet.2024.115074
    DNA samples selected for long read sequencing (LRS) are routinely required to be 'pure' with high DNA concentration. Hence the usefulness of samples with substandard DNA quality for LRS is unknown. We aim to perform de-novo assembly of Adenovirus sequenced from non-human primate (NHP) faeces using the Oxford Nanopore technologies (ONT), an LRS platform. Guided by initial conventional PCR screening, we performed ONT sequencing on 34 Adenovirus positive DNA samples, without prior selection based on faeces freshness level or DNA quality. Non-parametric correlation analysis showed that ONT sequencing outputs is not significantly associated (p > 0.05) with DNA concentrations, faeces freshness levels and the OD ratios of A260/A280 and A260/A230. This indicated that conventional DNA quality parameters may not be the most critical factors in determining the suitability of samples for ONT sequencing. A total of 61.76 % (21/34) of the positive-by-PCR-screening samples yielded Adenovirus reads while 38.24 % (13/34) did not in the PCR-free ONT workflow, although rarefaction analysis showed that sequencing saturation was achieved by all samples. Among the 21 samples with adenovirus reads, ten resulted in at least one Adenovirus contig by the Flye assembler while nine did not and two samples had only a single Adenovirus read. Identity similarity above 90 % in conventional PCR screening may help in selecting ONT positive samples.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  5. Wongphutorn P, Kopolrat KY, Worasith C, Eamudomkarn C, Hongsrichan N, Pitaksakulrat O, et al.
    PLoS One, 2024;19(12):e0306732.
    PMID: 39625913 DOI: 10.1371/journal.pone.0306732
    Detection of Strogyloides-specific IgG antibodies in urine and serum has been used in diagnostic and epidemiological studies on strongyloidiasis. However, the usefulness of these assays in assessing responses to anthelmintic treatment is unclear. Thus, we evaluated the diagnostic performance and temporal profiles of Strongyloides-specific IgG antibodies in a cohort of participants at baseline and post-treatment. The participants were prospectively screened for baseline parasitic infections by fecal examination [agar plate culture technique (APCT) and formalin-ethyl acetate concentration technique (FECT)] and digital droplet polymerase reaction (ddPCR) for Strongyloides stercoralis. At each sampling point, Strongyloides-specific IgG in urine and serum were measured by an in-house S. ratti-based enzyme-linked immunosorbent assay (ELISA). At baseline, 169 of 351 participants (48.1%) had S. stercoralis infection by the combined fecal examination and ddPCR. The diagnostic sensitivities of IgG in urine and serum were 91.1% and 88.2%, respectively. The participants were given treatment with a single oral dose of ivermectin (IVM, 200 μg/kg) and were followed up by fecal and immunological diagnosis at 3 to 18 months post-treatment. The cure rate of IVM treatment evaluated by APCT and ddPCR was 88.3% at three months post-treatment. The profiles of IgG in urine in the curative treatment group showed a significant trend of decline with time post-treatment (Kruskal-Wallis test = 113.4-212.6, p value < 0.0001) and the lowest levels were seen 12 months post-treatment. The treatment response (> 50% reduction in urinary IgG antibody units) was 100%, and conversion from positive to negative results was 65.4%. The treatment response and conversion to negative assessed by serum IgG-ELISA were similar to those by urine IgG-ELISA. The results from this long-term diagnostic study highlight the utility of urinary IgG and serum IgG for screening and monitoring treatment outcomes in strongyloidiasis.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  6. Van Hong N, van den Eede P, Van Overmeir C, Vythilingham I, Rosanas-Urgell A, Vinh Thanh P, et al.
    Am J Trop Med Hyg, 2013 Oct;89(4):721-3.
    PMID: 23980132 DOI: 10.4269/ajtmh.13-0027
    We have modified an existing semi-nested multiplex polymerase chain reaction (PCR) by adding one Plasmodium knowlesi-specific nested PCR, and validated the latter against laboratory and clinical samples. This new method has the advantage of being relatively affordable in low resource settings while identifying the five human Plasmodium species with a three-step PCR.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  7. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA
    Am J Trop Med Hyg, 1999 Apr;60(4):687-92.
    PMID: 10348249
    A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  8. Basuni M, Muhi J, Othman N, Verweij JJ, Ahmad M, Miswan N, et al.
    Am J Trop Med Hyg, 2011 Feb;84(2):338-43.
    PMID: 21292911 DOI: 10.4269/ajtmh.2011.10-0499
    Soil-transmitted helminth infections remain a major public health burden in low- and middle-income countries. The traditional diagnosis by microscopic examination of fecal samples is insensitive and time-consuming. In this study, a pentaplex real-time polymerase chain reaction (PCR) was evaluated for the simultaneous detection of Ancylostoma, Necator americanus, Ascaris lumbricoides, and Strongyloides stercoralis. The results were compared with those obtained by conventional parasitological diagnostic methods. Real-time PCR was positive in 48 of 77 samples (62.3%) and microscopic examination was positive in six samples (7.8%) only (P < 0.05). In conclusion, the real-time PCR assay described in this study provides a specific and sensitive diagnostic tool for the detection of these four helminth species in epidemiological studies and monitoring of treatment programs.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  9. Al-Marzooq F, Imad MA, How SH, Kuan YC
    Trop Biomed, 2011 Dec;28(3):545-56.
    PMID: 22433883 MyJurnal
    Establishing a microbial diagnosis for patients with community-acquired pneumonia (CAP) is still challenging and is often achieved in only 30-50% of cases. Polymerase chain reaction (PCR) has been shown to be more sensitive than conventional microbiological methods and it could help to increase the microbial yield for CAP patients. This study was designed to develop, optimize and evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP namely Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Duplex and triplex real-time PCR assays were developed using five sets of primers and probes that were designed based on an appropriate specific gene for each of the above CAP pathogens. The performance of primers for each organism was tested using SYBR Green melt curve analysis following monoplex realtime PCR amplification. Monoplex real-time PCR assays were also used to optimize each primers-probe set before combining them in multiplex assays. Two multiplex real-time PCR assays were then optimized; duplex assay for the differential detection of S. pneumoniae and B. pseudomallei, and triplex assay for the atypical bacterial pathogens. Both duplex and triplex real-time PCR assays were tested for specificity by using DNA extracted from 26 related microorganisms and sensitivity by running serial dilutions of positive control DNAs. The developed multiplex real-time PCR assays shall be used later for directly identifying CAP causative agents in clinical samples.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*; Real-Time Polymerase Chain Reaction/methods*
  10. Teoh BT, Sam SS, Tan KK, Johari J, Abd-Jamil J, Hooi PS, et al.
    Sci Rep, 2016 06 09;6:27663.
    PMID: 27278716 DOI: 10.1038/srep27663
    Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2-94.8%) than in those from primary dengue (21.7-64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  11. Tan CG, Ideris A, Omar AR, Yii CP, Kleven SH
    Onderstepoort J Vet Res, 2014 09 02;81(1):e1-e7.
    PMID: 25686255 DOI: 10.4102/ojvr.v81i1.708
    The present study was based on the reverse transcription polymerase chain reaction (RT-PCR) of the 16S ribosomal nucleic acid (rRNA) of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20-25 h at 37 °C, 22-25 h at 16 °C, and 23-27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h). The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  12. Hussein AA, Vasudevan R, Patimah I, Prashant N, Nora FA
    Andrologia, 2015 Mar;47(2):168-77.
    PMID: 24528375 DOI: 10.1111/and.12240
    Azoospermia factor region (AZF) deletions (AZFa, AZFb, AZFc and AZFd) in the Y chromosome were analysed in male infertility subjects in various populations with conflicting results. This study comprised of 54 infertile males and 63 fertile controls, and the frequency of AZFa, AZFb, AZFc and AZFd deletions were determined using conventional polymerase chain reaction (PCR) as well as real-time PCR-high resolution melting analysis-based methods. The results of this study showed that, three of 54 cases (5.55%) had AZF (a, b and c) deletions (two had AZFc and one had AZFa deletions). Four cases were found to have AZFd deletions (7.4%) with two of them being associated with AZFc deletions (P = 0.028). The frequency of AZF (a, b and c) deletions in Malaysian infertile male subjects was found to be comparable with other populations. AZFd deletions were found to be significant (P < 0.05) in male infertility and it may be associated with other types of AZF deletions.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  13. Lau YL, Anthony C, Fakhrurrazi SA, Ibrahim J, Ithoi I, Mahmud R
    Parasit Vectors, 2013;6(1):250.
    PMID: 23985047 DOI: 10.1186/1756-3305-6-250
    Amebiasis caused by Entamoeba histolytica is the third leading cause of death worldwide. This pathogenic amoeba is morphologically indistinguishable from E. dispar and E. moshkovskii, the non-pathogenic species. Polymerase chain reaction is the current method of choice approved by World Health Organization. Real-time PCR is another attractive molecular method for diagnosis of infectious diseases as post-PCR analyses are eliminated and turnaround times are shorter. The present work aimed to compare the results of Entamoeba species identification using the real-time assay against the established nested PCR method.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  14. Chiam CW, Chan YF, Loong SK, Yong SS, Hooi PS, Sam IC
    Diagn Microbiol Infect Dis, 2013 Oct;77(2):133-7.
    PMID: 23886793 DOI: 10.1016/j.diagmicrobio.2013.06.018
    Quantitative real-time polymerase chain reaction (qRT-PCR) is useful for diagnosis and studying virus replication. We developed positive- and negative-strand qRT-PCR assays to detect nsP3 of chikungunya virus (CHIKV), a positive-strand RNA alphavirus that causes epidemic fever, rash, and arthritis. The positive- and negative-strand qRT-PCR assays had limits of quantification of 1 and 3 log10 RNA copies/reaction, respectively. Compared to a published E1 diagnostic assay using 30 laboratory-confirmed clinical samples, the positive-strand nsP3 qRT-PCR assay had higher R(2) and efficiency and detected more positive samples. Peak viral load of 12.9 log(10) RNA copies/mL was reached on day 2 of illness, and RNA was detectable up to day 9, even in the presence of anti-CHIKV IgM. There was no correlation between viral load and persistent arthralgia. The positive-strand nsP3 assay is suitable for diagnosis, while the negative-strand nsP3 assay, which uses tagged primers to increase specificity, is useful for study of active viral replication kinetics.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  15. Ojha SC, Yean Yean C, Ismail A, Singh KK
    Biomed Res Int, 2013;2013:412370.
    PMID: 23509722 DOI: 10.1155/2013/412370
    The magnitude of shigellosis in developing countries is largely unknown because an affordable detection method is not available. Current laboratory diagnosis of Shigella spp. is laborious and time consuming and has low sensitivity. Hence, in the present study, a molecular-based diagnostic assay which amplifies simultaneously four specific genes to identify invC for Shigella genus, rfc for S. flexneri, wbgZ for S. sonnei, and rfpB for S. dysenteriae, as well as one internal control (ompA) gene, was developed in a single reaction to detect and differentiate Shigella spp. Validation with 120 Shigella strains and 37 non-Shigella strains yielded 100% specificity. The sensitivity of the PCR was 100 pg of genomic DNA, 5.4 × 10(4) CFU/ml, or approximately 120 CFU per reaction mixture of bacteria. The sensitivity of the pentaplex PCR assay was further improved following preincubation of the stool samples in gram-negative broth. A preliminary study with 30 diarrhoeal specimens resulted in no cross-reaction with other non-Shigella strains tested. We conclude that the developed pentaplex PCR assay is robust and can provide information about the four target genes that are essential for the identification of the Shigella genus and the three Shigella species responsible for the majority of shigellosis cases.
    Matched MeSH terms: Polymerase Chain Reaction/methods*
  16. Amal MN, Zamri-Saad M, Siti-Zahrah A, Zulkafli AR, Nur-Nazifah M
    J Appl Microbiol, 2013 Jul;115(1):20-9.
    PMID: 23557382 DOI: 10.1111/jam.12210
    AIMS: The aim of this study was to characterize Streptococcus agalactiae strains that were isolated from fishes in Malaysia using random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (REP-PCR) techniques.

    METHODS AND RESULTS: A total of 181 strains of Strep. agalactiae isolated from red hybrid tilapia (Oreochromis sp.) and golden pompano (Trachinotus blochii) were characterized using RAPD and REP-PCR techniques. Both the fingerprinting techniques generated reproducible band patterns, differing in the number and molecular mass amplicons. The RAPD technique displayed greater discriminatory power by its production of more complex binding pattern and divided all the strains into 13 groups, compared to 9 by REP-PCR technique. Both techniques showed the availability to differentiate the genetic profiles of the strains according to their geographical location of origin. Three strains of Strep. agalactiae that were recovered from golden pompano showed a genetic dissimilarity from the strains isolated from red hybrid tilapia, while the strain of ATCC 27956 that recovered from bovine displayed a unique profile for both methods.

    CONCLUSIONS: Both techniques possess excellent discriminative capabilities and can be used as a rapid means of comparing Strep. agalactiae strains for future epidemiological investigation.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Framework as the guideline in traceability of this disease and in the search for potential local vaccine candidates for streptococcosis in this country.

    Matched MeSH terms: Polymerase Chain Reaction/methods*
  17. Learn-Han L, Yoke-Kqueen C, Shiran MS, Vui-Ling CM, Nurul-Syakima AM, Son R, et al.
    Genet. Mol. Res., 2012;11(1):277-91.
    PMID: 22370930 DOI: 10.4238/2012.February.8.3
    The diversity of specific bacteria taxa, such as the actinomycetes, has not been reported from the Antarctic island of Barrientos. The diversity of actinomycetes was estimated with two different strategies that use PCR-denaturing gradient gel electrophoresis. First, a PCR was applied, using a group-specific primer that allows selective amplification of actinomycete sequences. Second, a nested-PCR approach was used that allows the estimation of the relative abundance of actinomycetes within the bacterial community. Molecular identification, which was based on 16S rDNA sequence analysis, revealed eight genera of actinomycetes, Actinobacterium, Actinomyces, an uncultured Actinomycete, Streptomyces, Leifsonia, Frankineae, Rhodococcus, and Mycobacterium. The uncultured Actinomyces sp and Rhodococcus sp appear to be the prominent genera of actinomycetes in Barrientos Island soil. PCR-denaturing gradient gel electrophoresis patterns were used to look for correlations between actinomycete abundance and environmental characteristics, such as type of rookery and vegetation. There was a significant positive correlation between type of rookery and abundance of actinomycetes; soil samples collected from active chinstrap penguin rookeries had the highest actinomycete abundance. Vegetation type, such as moss, which could provide a microhabitat for bacteria, did not correlate significantly with actinomycete abundance.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  18. Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC
    Analyst, 2012 Mar 21;137(6):1307-15.
    PMID: 22314701 DOI: 10.1039/c2an15905h
    The discovery that synthetic short chain nucleic acids are capable of selective binding to biological targets has made them to be widely used as molecular recognition elements. These nucleic acids, called aptamers, are comprised of two types, DNA and RNA aptamers, where the DNA aptamer is preferred over the latter due to its stability, making it widely used in a number of applications. However, the success of the DNA selection process through Systematic Evolution of Ligands by Exponential Enrichment (SELEX) experiments is very much dependent on its most critical step, which is the conversion of the dsDNA to ssDNA. There is a plethora of methods available in generating ssDNA from the corresponding dsDNA. These include asymmetric PCR, biotin-streptavidin separation, lambda exonuclease digestion and size separation on denaturing-urea PAGE. Herein, different methods of ssDNA generation following the PCR amplification step in SELEX are reviewed.
    Matched MeSH terms: Polymerase Chain Reaction/methods
  19. Issa R, Mohd Hassan NA, Abdul H, Hashim SH, Seradja VH, Abdul Sani A
    Diagn Microbiol Infect Dis, 2012 Jan;72(1):62-7.
    PMID: 22078904 DOI: 10.1016/j.diagmicrobio.2011.09.021
    A real-time quantitative polymerase chain reaction (qPCR) was developed for detection and discrimination of Mycobacterium tuberculosis (H37Rv and H37Ra) and M. bovis bacillus Calmette-Guérin (BCG) of the Mycobacterium tuberculosis complex (MTBC) from mycobacterial other than tuberculosis (MOTT). It was based on the melting curve (Tm) analysis of the gyrB gene using SYBR(®) Green I detection dye and the LightCycler 1.5 system. The optimal conditions for the assay were 0.25 μmol/L of primers with 3.1 mmol/L of MgCl(2) and 45 cycles of amplification. For M. tuberculosis (H37Rv and H37Ra) and M. bovis BCG of the MTBC, we detected the crossing points (Cp) at cycles of 16.96 ± 0.07, 18.02 ± 0.14, and 18.62 ± 0.09, respectively, while the Tm values were 90.19 ± 0.06 °C, 90.27 ± 0.09 °C, and 89.81 ± 0.04 °C, respectively. The assay was sensitive and rapid with a detection limit of 10 pg of the DNA template within 35 min. In this study, the Tm analysis of the qPCR assay was applied for the detection and discrimination of MTBC from MOTT.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction/methods*
  20. Chua KB, Mustafa B, Abdul Wahab AH, Chem YK, Khairul AH, Kumarasamy V, et al.
    Malays J Pathol, 2011 Jun;33(1):13-20.
    PMID: 21874746
    A prospective study was carried out to evaluate the sensitivity of dengue NS1 antigen-capture ELISA in comparison with dengue virus isolation, conventional RT-PCR and real-time RT-PCR for laboratory confirmation of acute dengue based on single-acute serum samples. Four primary healthcare centres were involved to recruit patients with clinical diagnosis of dengue illness. Patient's demographic, epidemiological and clinical information were collected on a standardized data entry form and 5 ml of venous blood was collected upon consent. In the laboratory, six types of laboratory tests were performed on each of the collected acute serum sample. Of the 558 acute serum samples collected from 558 patients with clinical diagnosis of dengue from mid-August 2006 to March 2009, 174 serum samples were tested positive by the dengue NS1 antigen-capture ELISA, 77 by virus isolation, 92 by RT-PCR and 112 by real-time RT-PCR. A total of 190 serum samples were tested positive by either one or a combination of the four methods whereas, only 59 serum samples were tested positive by all four methods. Thus, based on single-acute serum samples, 190 of the 558 patients (34.1%) were laboratory-confirmed acute dengue. The overall test sensitivity was 91.6%, 40.5%, 48.4% and 58.9% for dengue NS1 antigen-capture ELISA, virus isolation, conventional RT-PCR and real-time RT-PCR respectively. Statistically, dengue NS1 antigen-capture ELISA was the most sensitive and virus isolation was the least sensitive test for the laboratory confirmation of acute dengue based on single-acute serum specimens. Real-time RT-PCR was significantly more sensitive than the conventional RT-PCR.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links