Displaying publications 121 - 134 of 134 in total

Abstract:
Sort:
  1. Tew WY, Tan CS, Yan CS, Loh HW, Wen X, Wei X, et al.
    Biomed Pharmacother, 2023 Jan;157:114020.
    PMID: 36469968 DOI: 10.1016/j.biopha.2022.114020
    Chrysin, a bioflavonoid belonging to the flavone, occurs naturally in plants such as the passionflower, honey and propolis. Few studies have demonstrated that chrysin can promote vasorelaxant activities in rats' aorta and mesenteric arteries. To date, no research has explored the signalling system routes that chrysin may utilise to produce its vasorelaxant action. Therefore, this study aimed to investigate the underlying mechanisms involved in chrysin-induced vasorelaxant in rats' aortic rings and assess the antihypertensive effect of chrysin in spontaneously hypertensive rats (SHRs). The findings revealed that chrysin utilised both endothelium-dependent and endothelium-independent mechanisms. The presence of L-NAME (endothelial NO synthase inhibitor), ODQ (sGC inhibitor), methylene blue (cGMP lowering agent), 4-AP (voltage-gated potassium channel inhibitor), atropine (muscarinic receptors inhibitor) and propranolol (β-adrenergic receptors inhibitor) significantly reduced the chrysin's vasorelaxant action. Furthermore, chrysin can reduce intracellular Ca2+ levels by limiting the extracellular intake of Ca2+ through voltage-operated calcium channels and blocking the intracellular release of Ca2+ from the sarcoplasmic reticulum via the IP3 receptor. These indicate that chrysin-induced vasorelaxants involved NO/sGC/cGMP signalling cascade, muscarinic and β-adrenergic receptors, also the potassium and calcium channels. Although chrysin had vasorelaxant effects in in vitro studies, the in vivo antihypertensive experiment discovered chrysin does not significantly reduce the blood pressure of SHRs following 21 days of oral treatment. This study proved that chrysin utilised multiple signalling pathways to produce its vasorelaxant effect in the thoracic aorta of rats; however, it had no antihypertensive effect on SHRs.
    Matched MeSH terms: Endothelium, Vascular
  2. David SR, Lai PPN, Chellian J, Chakravarthi S, Rajabalaya R
    Sci Rep, 2023 Aug 01;13(1):12423.
    PMID: 37528147 DOI: 10.1038/s41598-023-39442-6
    The present work examined the effect of oral administration of rutin and its combination with metformin, an antidiabetic drug on blood glucose, total cholesterol and triglycerides level and vascular function in streptozotocin (STZ) -induced diabetic rats. Male Sprague Dawley rats were rendered diabetic by a single intraperitoneal injection of STZ (50 mg/kg). Rutin and metformin were orally administered to diabetic rats at a dose of 100 mg/kg and 300 mg/kg body weight/day, respectively, for 4 weeks. Plasma analysis was conducted to determine changes in the plasma glucose and lipid levels. Rat aortic ring reactivity in response to endothelium-dependent (acetylcholine, ACh) and endothelium-independent (sodium nitroprusside, SNP) relaxants, and to the α1-adrenergic agonist phenylephrine (PE) were recorded. Histology of pancreas, liver and kidney were evaluated. In results, rutin and metformin alone and in combination has led to significant improvements in blood glucose, cholesterol and triglyceride levels compared to diabetic group. Diabetic aortic rings showed significantly greater contraction in response to PE, and less relaxation in response to ACh and SNP. Treatment with rutin and metformin in combination significantly reduced PE-induced contraction and increased ACh-induced and SNP-induced relaxation in diabetes when compared to rutin or metformin alone. Significant histological improvements were seen with combination therapy. In conclusion, rutin and metformin combination therapy has the most potentiality for restoring blood glucose and lipid level as well as vascular function.
    Matched MeSH terms: Endothelium, Vascular
  3. Cheah PS, Mohidin N, Mohd Ali B, Maung M, Latif AA
    Malays J Med Sci, 2008 Jul;15(3):49-54.
    PMID: 22570589
    This study illustrates and quantifies the changes on corneal tissue between the paraffin-embedded and resin-embedded blocks and thus, selects a better target in investigational ophthalmology and optometry via light microscopy. Corneas of two cynomolgus monkeys (Macaca fascicularis) were used in this study. The formalin-fixed cornea was prepared in paraffin block via the conventional tissue processing protocol (4-day protocol) and stained with haematoxylin and eosin. The glutaraldehyde-fixed cornea was prepared in resin block via the rapid and modified tissue processing procedure (1.2-day protocol) and stained with toluidine blue. The paraffin-embedded sample exhibits various undesired tissue damage and artifact such as thinner epithelium (due to the substantial volumic extraction from the tissue), thicker stroma layer (due to the separation of lamellae and the presence of voids) and the distorted endothelium. In contrast, the resin-embedded corneal tissue has demonstrated satisfactory corneal ultrastructural preservation. The rapid and modified tissue processing method for preparing the resin-embedded is particularly beneficial to accelerate the microscopic evaluation in ophthalmology and optometry.
    Matched MeSH terms: Endothelium
  4. Muharis SP, Top AG, Murugan D, Mustafa MR
    Nutr Res, 2010 Mar;30(3):209-16.
    PMID: 20417882 DOI: 10.1016/j.nutres.2010.03.005
    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.
    Matched MeSH terms: Endothelium, Vascular/physiopathology*
  5. Einstein JW, Mustafa MR, Nishigaki I, Rajkapoor B, Moh MA
    Methods Find Exp Clin Pharmacol, 2008 Oct;30(8):599-605.
    PMID: 19088944 DOI: 10.1358/mf.2008.30.8.1268401
    The protective effect of methanol extracts of Cassia fistula (flowers, leaves and bark) was examined in vitro in human umbilical vein endothelial cells (HUVEC) against toxicity induced by glycated protein (GFBS) in vitro. The experiments consisted of eight groups of HUVEC with five flasks in each group. Group I was treated with 15% FBS, group II with GFBS (70 microM) alone, and the other six groups were treated with GFBS plus 25 and 50 microg of each of the three types of C. fistula extracts. After 72 h of incubation, cells were collected and tested for lipid peroxidation, antioxidant enzyme activities and glutathione S-transferase (GST). The protective effect of C. fistula extracts against GFBS-induced cytotoxicity was examined in HUVEC by using trypan blue exclusion and MTT assays. Results showed that HUVEC incubated with GFBS alone showed a significant (P < 0.001) elevation of lipid peroxidation accompanied by depletion of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR), in addition to decreased cytosolic GST. Treatment of HUVEC with C. fistula extracts at a concentration of 25 and 50 microg significantly decreased lipid peroxidation and normalized the activities of the antioxidant enzymes and GST levels in a concentration-dependent manner. Morphological changes of HUVEC were compared with respective controls; in addition, the C. fistula extracts increased the viability of HUVEC damaged by GFBS. A protective effect of C. fistula extracts on HUVEC against GFBS-induced toxicity suggested a potential beneficial effect of the extract in preventing diabetic angiopathies.
    Matched MeSH terms: Endothelium, Vascular/cytology
  6. Nawawi H, Osman NS, Annuar R, Khalid BA, Yusoff K
    Atherosclerosis, 2003 Aug;169(2):283-91.
    PMID: 12921980
    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.
    Matched MeSH terms: Endothelium, Vascular/physiopathology*
  7. Ajay M, Achike FI, Mustafa AM, Mustafa MR
    Clin Exp Pharmacol Physiol, 2006 Apr;33(4):345-50.
    PMID: 16620299
    1. There is a growing interest in the anti-oxidant characteristics and use of flavonoids in the management of cardiovascular diseases. The cardiovascular mechanism of action of these plant derivatives remains controversial. This study compared the effects of the flavonoid quercetin with those of the anti-oxidant vitamin ascorbic acid (vitamin C) on the reactivity of aortic rings from spontaneously hypertensive rats (SHR). 2. The phenylephrine (PE)-induced contractile and the endothelium-dependent and independent relaxant responses of aortic rings from 21 to 22 week old SHR and age-matched normotensive Wistar (WKY) rats were observed in the presence of quercetin or ascorbic acid. All the experiments were performed in the presence of the cyclooxygenase inhibitor, indomethacin (10 micromol/L). 3. The endothelium-dependent and independent relaxations to acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were significantly lesser in the SHR compared to the WKY tissues whereas the contractile responses to PE were similar in both tissues. Pretreatment of WKY rings with quercetin or ascorbic acid had no effect on the responses to ACh or PE. In the SHR tissues, however, quercetin or ascorbic acid significantly improved the relaxation responses to ACh and reduced the contractions to PE with greater potency for quercetin. Both compounds lacked any effects on the responses to SNP in either aortic ring types. N(omega)-nitro-L-arginine methyl ester (l-NAME, 10 micromol/L) significantly attenuated the vasodepressor effects of quercetin and ascorbic acid, raising the responses to PE to a level similar to that observed in the control SHR tissues. In l-NAME pretreated aortic rings, quercetin and ascorbic acid inhibited the contractile responses to PE with the same magnitude in WKY and SHR tissues. 4. The present results suggest that acute exposure to quercetin improves endothelium-dependent relaxation and reduces the contractile responses of hypertensive aortae with a greater potency than ascorbic acid. This suggests a better vascular protection with this flavonoid than ascorbic acid in the SHR model of hypertension and possibly in human cardiovascular diseases.
    Matched MeSH terms: Endothelium, Vascular/physiology
  8. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Endothelium, Vascular/drug effects
  9. Chin LC, Achike FI, Mustafa MR
    Vascul Pharmacol, 2007 Mar;46(3):223-8.
    PMID: 17126611 DOI: 10.1016/j.vph.2006.10.005
    Hydrogen peroxide (H(2)O(2)) contributes in the regulation of vascular tone, especially in pathological states. The role of H(2)O(2) and superoxide anion free radicals in angiotensin II (Ang II)-induced contraction of diabetic tissues was examined with the aim of elucidating the underlying mechanisms. Isometric tension in response to various drug treatments was measured in isolated superior mesenteric arteries of streptozotocin (STZ)-induced diabetic WKY rats using the Mulvany wire myograph. Compared to the normal (euglycaemic) arteries, the Ang II-induced contraction was significantly reduced in diabetic arteries. Superoxide dismutase (SOD; converts superoxide to H(2)O(2)) significantly reduced the contraction in both types of arteries -- an effect abolished by catalase (H(2)O(2) scavenger), suggesting that the SOD effect was mediated by H(2)O(2). Treatment with catalase had no effect on the Ang II contraction in euglycaemic arteries, but it raised the contraction in diabetic arteries to euglycaemic levels. This increase was similar to that observed with diabetic arteries incubated with L-NAME. Combined catalase and L-NAME treatment further enhanced the contraction in diabetic arteries, suggesting that the catalase effect was not mediated by nitric oxide (NO). The catalase effect was abolished by indomethacin treatment. These results suggest that attenuation of Ang II-induced contraction in diabetic tissues is modulated by endogenous H(2)O(2), the scavenging of which unmasks an indomethacin-sensitive (and therefore cyclooxygenase product-mediated) Ang II-induced contraction.
    Matched MeSH terms: Endothelium, Vascular/drug effects
  10. Rasool AH, Ghazali DM, Abdullah H, Halim AS, Wong AR
    Microvasc Res, 2009 Sep;78(2):230-4.
    PMID: 19481100 DOI: 10.1016/j.mvr.2009.05.005
    Post occlusive skin reactive hyperemia (PORH) is a tool used to assess microcirculation. Endothelial nitric oxide synthase (eNOS) mediates nitric oxide (NO) production; polymorphism of the eNOS gene may affect response to the PORH process. This study aims to determine whether eNOS G894T gene polymorphism affects response to skin PORH. 230 normotensive male and females between 18 and 40 years participated in this cross-sectional study. 170 subjects were of the homozygous GG genotype, whereas 60 were of the GT genotype. Skin PORH was performed by occlusion of the upper arm at 200 mm Hg for 3 min. Skin perfusion and temperature were monitored before, during and after occlusion release using the laser Doppler fluximetry. There were no significant differences between genotypes in their baseline blood pressure, serum cholesterol, BMI and age. Maximum change in perfusion after occlusion release (PORHmax) for the GG and GT genotypes were not significantly different at 50.15+/-1.29 vs. 47.92+/-2.17 AU; ANCOVA, p=0.351. Peak perfusion (PORHpeak) were also not significantly different between the two genotypes (61.23+/-1.36 vs. 57.72+/-2.32 AU; p=0.169). Minimum baseline perfusion were however higher in the GG compared to the GT genotype (10.83+/-0.29 vs. 9.61+/-0.50, p=0.029). We conclude that microvascular reactivity, assessed by change in perfusion after temporary ischemia was not significantly different between the GG and GT genotypes of the eNOS G894T gene. eNOS 894T allele carriers however, have lower baseline perfusion compared to the homozygous G894 allele carrier.
    Matched MeSH terms: Endothelium, Vascular
  11. Ajay M, Achike FI, Mustafa MR
    Pharmacol Res, 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Endothelium, Vascular/drug effects; Endothelium, Vascular/physiopathology
  12. Swamy M, Sirajudeen KN, Chandran G
    Drug Chem Toxicol, 2009;32(4):326-31.
    PMID: 19793024 DOI: 10.1080/01480540903130641
    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity.
    Matched MeSH terms: Endothelium, Vascular
  13. Khan AU, Mustafa MR, Khan AU, Murugan DD
    PMID: 22883710 DOI: 10.1186/1472-6882-12-121
    Gentiana floribunda was investigated for the possible hypotensive and vasodilator activities in an attempt to rationalize its traditional use in hypertension.
    Matched MeSH terms: Endothelium, Vascular
  14. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Endothelium, Vascular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links