Displaying publications 121 - 140 of 227 in total

Abstract:
Sort:
  1. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  2. Loh TC, Lee YC, Liang JB, Tan D
    Bioresour Technol, 2005 Jan;96(1):111-4.
    PMID: 15364088
    Vermicomposting is commonly adopted for the treatment of livestock organic wastes. In the present study, two types of livestock manure were used for culturing of the earthworm, Eisenia foetida. Each treatment group consisted of six replicates and worm vermicasts were examined after 5 weeks. The concentrations of total C, P and K in goat manure vermicasts were higher than those in cattle manure vermicasts. Cattle vermicasts had a higher N content than goat vermicasts but the C:N ratio of fresh manure was higher than that of vermicasts for both materials. Earthworm biomass and reproductive performance, in terms of number of worms after 5 weeks of experiment, were higher in cattle manure than in goat manure. The cocoon production per worm in cattle manure was higher than in goat manure. However, the hatchability of cocoons was not affected by manure treatments. In conclusion, cattle manure provided a more nutritious and friendly environment to the earthworms than goat manure.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  3. Alam MZ, Fakhru'l-Razi A, Molla AH
    PMID: 15332668
    A laboratory-scale study was undertaken to evaluate the liquid state bioconversion (LSB) in terms of biodegradation of microbially treated domestic wastewater sludge (biosolids) as well as its kinetics. The potential fungal strains and process factors developed from previous studies were used throughout the study. The results presented in this study showed that an effective biodegradation occurred with the biosolids (sludge cake) accumulated. The maximum biosolids (sludge cake) accumulated (93.8 g/kg of liquid sludge) enriched with the biomass protein (30.2 g/kg of dry biosolids), was achieved which improved the effluent quality by enhancing the removal of chemical oxygen demand (COD), reducing sugar (RS), soluble protein (SP), total dissolved solids (TDS), and total suspended solids (TSS). The higher reduction of specific resistance to filtration (SRF) was observed during bioconversion process. The kinetics results showed that the experimental data were better fitted for the biodegradation efficiency, and biosolids accumulation and biodegradation rate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  4. Leo CP, Yahya MZ, Kamal SN, Ahmad AL, Mohammad AW
    Water Sci Technol, 2013;67(4):831-7.
    PMID: 23306262 DOI: 10.2166/wst.2012.625
    Aquaculture activities in developing countries have raised deep concern about nutrient pollution, especially excess phosphorus in wastewater, which leads to eutrophication. NF, NF90, NF450 and XLE membranes were studied to forecast the potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus from aquaculture wastewater. Cross-sectional morphology, water contact angle, water permeability and zeta potential of these membranes were first examined. Membrane with higher porosity and greater hydrophilicity showed better permeability. Membrane samples also commonly exhibited high zeta potential value in the polyphosphate-rich solution. All the selected membranes removed more than 90% of polyphosphate from the concentrated feed (75 mg/L) at 12 bar. The separation performance of XLE membrane was well maintained at 94.6% even at low pressure. At low feed concentration, more than 70.0% of phosphorus rejection was achieved using XLE membrane. The formation of intermolecular bonds between polyphosphate and the acquired membranes probably had improved the removal of polyphosphate at high feed concentration. XLE membrane was further tested and its rejection of polyphosphate reduced with the decline of pH and the addition of ammonium nitrate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  5. Sannasi P, Kader J, Ismail BS, Salmijah S
    Bioresour Technol, 2006 Mar;97(5):740-7.
    PMID: 16324841
    This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  6. Ujang Z, Ng SS, Nagaoka H
    Water Sci Technol, 2005;51(10):335-42.
    PMID: 16104438
    Biofouling control is important for effective process of membrane bioreactor (MBR). In this study, phenomena of biofouling for immersed type extended aeration MBR with two different anti-fouling aeration intensities were studied through a laboratory set up. The objectives of this study were (a) to observe biofouling phenomena of MBR that operates under different anti-fouling bubbling intensity, and simultaneously monitors performance of the MBR in organic carbon and nutrients removal; (b) to compare effectiveness of detergent and detergent-enzyme cleaning solutions in recovering biofouled membranes that operated in the extended aeration MBR. For MBR, which operated under continuous anti-fouling aeration, deposition and accumulation of suspended biomass on membrane surface were prohibited. However, flux loss was inescapable that biofilm layer was the main problem. Membrane cleaning was successfully carried out with detergent-enzyme mixture solutions and its effectiveness was compared with result from cleaning with just detergent solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  7. Ahmad AL, Ismail S, Bhatia S
    Environ Sci Technol, 2005 Apr 15;39(8):2828-34.
    PMID: 15884382
    The coagulation-flocculation process incorporated with membrane separation technology will become a new approach for palm oil mill effluent (POME) treatment as well as water reclamation and reuse. In our current research, a membrane pilot plant has been used for POME treatment where the coagulation-flocculation process plays an important role as a pretreatment process for the mitigation of membrane fouling problems. The pretreated POME with low turbidity values and high water recovery are the main objectives to be achieved through the coagulation-flocculation process. Therefore, treatment optimization to serve these purposes was performed using jar tests and applying a response surface methodology (RSM) to the results. A 2(3) full-factorial central composite design (CCD) was chosen to explain the effect and interaction of three factors: coagulant dosage, flocculent dosage, and pH. The CCD is successfully demonstrated to efficiently determine the optimized parameters, where 78% of water recovery with a 20 NTU turbidity value can be obtained at the optimum value of coagulant dosage, flocculent dosage, and pH at 15 000 mg/L, 300 mg/L, and 6, respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  8. Zulkali MM, Ahmad AL, Norulakmal NH
    Bioresour Technol, 2006 Jan;97(1):21-5.
    PMID: 15963716
    The effects of initial concentration of lead, temperature, biomass loading and pH were investigated for an optimized condition of lead uptake from the aqueous solution. The optimization process was analyzed using Central Composite Face-Centered Experimental Design in Response Surface Methodology (RSM) by Design Expert Version 5.0.7 (StatEase, USA). The design was employed to derive a statistical model for the effect of parameters studied on the removal of lead ion from aqueous solution. The coefficient of determination, R2 was found to be 92.36%. The initial concentration of 50.0 mg/L, temperature of 60 degrees C, biomass loading of 0.2 g and pH of 5.0 had been found to be the optimum conditions for the maximum uptake of lead ions in 98.11% batch mode. Under the optimum conditions, the lead uptake was attained to be circa 8.60 mg/g.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  9. Muhamad MH, Sheikh Abdullah SR, Abu Hasan H, Abd Rahim RA
    J Environ Manage, 2015 Nov 1;163:115-24.
    PMID: 26311084 DOI: 10.1016/j.jenvman.2015.08.012
    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  10. Mohd Amin MF, Heijman SG, Rietveld LC
    Water Sci Technol, 2016;73(7):1719-27.
    PMID: 27054745 DOI: 10.2166/wst.2016.001
    In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  11. Ujang Z, Wong CL, Manan ZA
    Water Sci Technol, 2002;46(11-12):77-84.
    PMID: 12523736
    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  12. Molla AH, Fakhru'l-Razi A, Abd-Aziz S, Hanafi MM, Roychoudhury PK, Alam MZ
    Bioresour Technol, 2002 Dec;85(3):263-72.
    PMID: 12365494
    Twenty seven filamentous fungal strains representing five genera; Aspergillus, Penicillium, Trichoderma, Myriodontium and Pleurotus were isolated from four sources; domestic wastewater sludge cake (SC) from IWK (Indah Water Konsortium) wastewater treatment plant, palm oil mill effluent compost from Sri Ulu palm Oil Processing Mill, compost of plant debris, and fungal fruiting bodies from a rotten wood stump. Thirty-three strains/isolates were tested for their ability to convert domestic wastewater sludge into compost by assessing biomass production and growth rate on sludge enriched media. The strains/isolates Aspergillus niger, SS-T2008, WW-P1003 and RW-P1 512 produced the highest dry biomass at higher sludge supplemented culture media from their respective group (Aspergillus, Trichoderma, Penicillium and Basidiomycetes, respectively). This implied these strains are better adapted for growth at higher sludge rich substances, and subsequently may be efficient in bioconversion/biodegradation of sludge. The fungi isolated from ecological closely related sources were more amendable to adaptation in a sludge rich culture media.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  13. Fakhru'l-Razi A, Alam MZ, Idris A, Abd-Aziz S, Molla AH
    PMID: 12369644
    Bioconversion of higher strength of domestic wastewater biosolids (sludge) (4% w/w of TSS) by mixed fungal culture of Aspergillus niger and Penicillium corylophilum was studied in a laboratory. The effect of potential mixed fungi on domestic wastewater sludge accelerated the liquid state bioconversion (LSB) process. The highest production of dry sludge cake (biosolids) was enriched with fungal biomass to about 85.66 g/kg containing 25.23 g/kg of protein after 8 days of treatment. The results presented in this study revealed that the reduction of chemical oxygen demand (COD), total suspended solid (TSS), and specific resistance to filtration (SRF) of treated sludge were highly influenced by the fungal culture as compared to control (uninnoculated). The maximum removal rates in treated sludge (biosolids) supernatant recorded were 92% of COD and 98.8% of TSS. Lower SRF (1.08 x 10(12) m/kg) was perceived in microbially treated sludge after 6 days of fermentation. The observed parameters were highly influenced after 8 days of treatment. The influence of pH was also studied and presented in the paper.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Haron MJ, Yunus WM
    PMID: 11460327
    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  15. Ariff AB, Rosfarizan M, Sobri MA, Karim MI
    Environ Technol, 2001 Jun;22(6):697-704.
    PMID: 11482390
    Research was undertaken to investigate the treatment of fishery washing water using Bacillus sphaericus, and to recover the spores for subsequent use as bioinsecticide to control the population of mosquitoes. This treatment method could reduce pollution due to organic matter by decreasing the value of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) by about 85% and 92%, respectively. The maximum concentration of spores (83.3 x 10(7) spores ml(-1)) using normal concentration of filtered fishery washing water was only about 27% lower than that obtained in fermentation using 0.25% (w/v) yeast extract. The larvicidal activity of the spores produced in fermentation using fishery washing water to Culex quinquefaciatus, as measured by LD50 after 48 h, was almost the same as the larvicidal activity of spores obtained from fermentation using yeast extract.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  16. Lee KM, Lim PE
    Water Sci Technol, 2003;47(10):41-7.
    PMID: 12862215
    The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Wong KK, Lee CK, Low KS, Haron MJ
    Chemosphere, 2003 Jan;50(1):23-8.
    PMID: 12656225
    A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27 +/- 2 degrees C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  18. Alam MZ, Fakhru'l-Razi A, Idris A, Abd-Aziz S
    PMID: 12227649
    The bioconversion of domestic wastewater sludge by immobilized mixed culture of filamentous fungi was investigated in a laboratory. The potential mixed culture of Penicillium corylophilum WWZA1003 and Aspergillus niger SCahmA103 was isolated from its local habitats (wastewater and sludge cake) and optimized on the basis of biodegradability and dewaterability of treated sludge. The observed results in this study showed that the sludge treatment was highly influenced by the effect of immobilized mixed fungi using liquid state bioconversion (LSB) process. The maximum production of dry filter cake (DFC) was enriched with fungal biomass to about 20.05 g/kg containing 23.47 g/kg of soluble protein after 4 days of fungal treatment. The reduction of COD, TSS, turbidity (optical density against distilled water, 660 nm), reducing sugar and protein in supernatant and filtration rate of treated sludge were influenced by the fungal mixed culture as compared to control (uninnoculated). After these processes, 99.4% of TSS, 98.05% of turbidity, 76.2% of soluble protein, 98% of reducing sugar and 92.4% of COD in supernatant of treated sludge were removed. Filtration time was decreased tremendously by the microbial treatment after 2 days of incubation. The effect of fungal strain on pH was also studied and presented. Effective bioconversion was observed after 4 days of fungal treatment.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  19. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Alam MZ, Fakhru'l-Razi A, Molla AH, Roychoudhury PK
    PMID: 11545349
    This study was conducted to evaluate the effect of an eminent decay fungus, Phanerocheate chrysosporium of organic residues on wastewater sludge for its improvement through decomposition and separation of waste particles by Liquid State Bioconversion (LSB). The effect of fungal treatment was compared to uninoculated (Control) at three different harvests 7, 14 and 21 days after inoculation (DAI). The observed results showed that the weight loss and solid content of wastewater sludge were significantly influenced by Phanerocheate chrysosporium. Both parameters were highly influenced at 7 DAI. The COD and pH of wastewater sludge were also highly influenced by fungal treatment.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links