Displaying publications 1441 - 1460 of 8276 in total

Abstract:
Sort:
  1. Khalaf AT, Wan J, Wei H, Fubing S, Zainol J, Kadir SYA, et al.
    Appl Biochem Biotechnol, 2024 Jan;196(1):261-274.
    PMID: 37119504 DOI: 10.1007/s12010-023-04463-4
    Replication-competent oncolytic adenovirus (TOA2) gene therapy is a recently introduced anti-tumor treatment regimen with superior results. The biodistribution studies of virus vector-based medicine seem more cautious and have been given much attention recently in terms of its quality and safety in preclinical trials. The current study determined the biodistribution and safety of a replication-competent adenovirus in different organs to predict its toxicity threshold. The present study has used TOA2, while biodistribution analysis was performed in human lung carcinoma A549-induced tumor-bearing nude mice model. Intratumoral injection was applied onto tumor-bearing mice with the adenovirus (3×1010 VP per mouse). Mice were sacrificed at the end of the experiment and the organs were dissected. Biodistribution analysis was done with complete hexon gene detection in each organ using quantitative real-time polymerase chain reaction (qRT-PCR). The biodistribution and concentration profiles showed that the TOA2 is well distributed in the entire tumor tissue. After dose 3 at day 11, the concentration of the virus has increased in the tumor tissue from 2240.54 (± 01.69) copies/100 ng genome to 13,120.28 (± 88.21) copies/100 ng genome on the 18th day, which eventually approached 336.45 (± 23.41) copies/100ng genome on the day 36. On the contrary, the concentration of the same decreased in the order of the liver, kidney, spleen, lung, and heart over time but no distributional traces in gonads. But the concentration found decreased dramatically in blood and other organs, while at the end of the experiment no detectable distribution was seen besides tumor tissue. The study confirms that adenovirus-based tumor therapy using conditionally replicating competent oncolytic TOA2 exhibited great efficiency with no toxicity at all.
    Matched MeSH terms: Adenoviridae/genetics; Genetic Vectors/genetics
  2. Li W, Ren Q, Feng J, Lee SY, Liu Y
    PLoS One, 2024;19(1):e0297164.
    PMID: 38241246 DOI: 10.1371/journal.pone.0297164
    Deer products from sika deer (Cervus nippon) and red deer (C. elaphus) are considered genuine and used for Traditional Chinese Medicine (TCM) materials in China. Deer has a very high economic and ornamental value, resulting in the formation of a characteristic deer industry in the prescription preparation of traditional Chinese medicine, health food, cosmetics, and other areas of development and utilization. Due to the high demand for deer products, the products are expensive and have limited production, but the legal use of deer is limited to only two species of sika deer and red deer; other wild deer are prohibited from hunting, so there are numerous cases of mixing and adulteration of counterfeit products and so on. There have been many reports that other animal (pig, cow, sheep, etc.) tissues or organs are often used for adulteration and confusion, resulting in poor efficacy of deer traditional medicine and trade fraud in deer products. To authenticate the deer products in a rapid and effective manner, the analysis used 22 deer products (antler, meat, bone, fetus, penis, tail, skin, and wool) that were in the form of blind samples. Total DNA extraction using a modified protocol successfully yielded DNA from the blind samples that was useful for PCR. Three candidate DNA barcoding loci, cox1, Cyt b, and rrn12, were evaluated for their discrimination strength through BLAST and phylogenetic clustering analyses. For the BLAST analysis, the 22 blind samples obtained 100% match identity across the three gene loci tested. It was revealed that 12 blind samples were correctly labeled for their species of origin, while three blind samples that were thought to originate from red deer were identified as C. nippon, and seven blind samples that were thought to originate from sika deer were identified as C. elaphus, Dama dama, and Rangifer tarandus. DNA barcoding analysis showed that all three gene loci were able to distinguish the two Cervus species and to identify the presence of adulterant species. The DNA barcoding technique was able to provide a useful and sensitive approach in identifying the species of origin in deer products.
    Matched MeSH terms: Sheep/genetics; Swine/genetics
  3. González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, et al.
    Genome Biol Evol, 2024 Aug 05;16(8).
    PMID: 39173139 DOI: 10.1093/gbe/evae161
    Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.
    Matched MeSH terms: Adaptation, Physiological/genetics; Altitude Sickness/genetics
  4. Smith DG, Ng J, George D, Trask JS, Houghton P, Singh B, et al.
    Am J Phys Anthropol, 2014 Sep;155(1):136-48.
    PMID: 24979664 DOI: 10.1002/ajpa.22564
    Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co-exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Macaca fascicularis/genetics*
  5. Rosenblum LL, Supriatna J, Melnick DJ
    Am J Phys Anthropol, 1997 Sep;104(1):35-45.
    PMID: 9331452
    Mitochondrial DNA variation was surveyed in nine populations of the pigtail macaque (Macaca nemestrina), covering all three recognized subspecies in Southeast Asia. To do this, a 2,300 base pair fragment spanning the mitochondrial NAD 3 and NAD 4 genes and flanking tRNA subunits leucine and glycine was targeted for amplification and digested with a battery of 16 restriction endonucleases. Out of a total of 107 individuals, 32 unique haplotypes could be distinguished. Parsimony and neighbor-joining analyses grouped the haplotypes into five strongly supported assemblages representing China/Thailand, Malaysia, Sumatra, Borneo, and Siberut. These results indicate that the mainland and island mtDNA haplotypes are strictly and uniquely limited to the geographic ranges of the recognized morphological subspecies. Cladistic and neighbor-joining analyses indicate that inferred phylogenies of mtDNA haplotypes are congruent with subspecies designations. Furthermore, in support of morphological studies, results indicate that the Mentawai macaque is most likely not a distinct species but a subspecies of M. nemestrina.
    Matched MeSH terms: DNA, Mitochondrial/genetics*; Macaca nemestrina/genetics*
  6. Quan Y, Ahmed SA, Menezes da Silva N, Al-Hatmi AMS, Mayer VE, Deng S, et al.
    Fungal Biol, 2021 Apr;125(4):276-284.
    PMID: 33766306 DOI: 10.1016/j.funbio.2020.11.006
    Among ancestral fungi in Chaetothyriales, several groups have a life style in association with tropical ants, either in domatia or in carton-nests. In the present study, two strains collected from ant carton in Thailand and Malaysia were found to represent hitherto undescribed species. Morphological, physiological, phylogenetic data and basic genome information are provided for their classification. Because of the relatively large phylogenetic distances with known species confirmed by overall genome data, large subunit (LSU) and Internal Transcribed Spacer (ITS) ribosomal DNA sequences were sufficient for taxonomic circumscription of the species. The analyzed strains clustered with high statistical support as a clade in the family Trichomeriaceae. Morphologically they were rather similar, lacking sporulation in vitro. In conclusion, Incumbomyces delicatus and Incumbomyces lentus were described as new species based on morphological, physiological and phylogenetic analysis.
    Matched MeSH terms: DNA, Fungal/genetics; DNA, Ribosomal Spacer/genetics
  7. Saha N, Ong YW
    Ann Acad Med Singap, 1984 Jul;13(3):498-501.
    PMID: 6517517
    A total of 870 subjects comprising 524 Chinese (from different dialect groups), 231 Malays and 115 Tamil Indians were investigated for the distribution of haptoglobin types and ABO blood groups. Haptoglobins were typed by PAG electrophoresis using discontinuous buffer system. The frequencies of Hp,1 Hp2 and Hp0 were found to be 0.330, 0.670 and 0.029 in Chinese; 0.298, 0.702 and 0.004 in Malays; and 0.167, 0.833 and 0.009 in Indians. The Hainanese had the highest frequency of Hp1 (0.375) followed by Cantonese (0.348), Teochew (0.333) and Hakkas (0.288). The distribution of all the phenotypes of haptoglobin was at equilibrium in all the population groups studied. No association of ABO blood groups was detected with the haptoglobin types. However, there was an excess of AB blood group in persons carrying Hp2 compared with those with Hp1.
    Matched MeSH terms: ABO Blood-Group System/genetics; Haptoglobins/genetics*
  8. Chong VF, Pathmanathan R
    Ann Acad Med Singap, 1993 Sep;22(5):807-10.
    PMID: 8267366
    Behçet's syndrome is a rare multisystem disorder. The occurrence in families although well recognised is uncommon. The mode of inheritance, however, has not been elucidated. Sixty-one cases of familial disease have been documented to date. There was only one previous report on familial Behçet's syndrome with gastrointestinal involvement. This paper reports two cases of Behçet's syndrome with gastrointestinal involvement in a Malaysian woman of Chinese ethnic origin and her child. The mother satisfied three major criteria (oral ulcers, genital ulcers and erythema nodosum) and one minor criterion (gastrointestinal involvement). Her son satisfied two major criteria (oral and genital ulcers) and three minor criteria (intestinal involvement, central nervous manifestation and a positive family history). The radiological and pathological features of the gastrointestinal lesions in both patients resembled those of Crohn's disease. The literature on Behçet's syndrome is reviewed.
    Matched MeSH terms: Behcet Syndrome/genetics*; Gastrointestinal Diseases/genetics*
  9. Welch QB, Shu LC, Thangavelu S, Lie-Injo EL
    Hum Hered, 1978;28(1):62-5.
    PMID: 618819
    812 West Malaysian Orang Asli belonging to four ethnic groups were surveyed for adenosine deaminase (ADA; EC 3.5.4.4) using starch gel electrophoresis. Only the common ADA1 and ADA2 alleles were found, with the frequencies of the latter being 0.025, 0.103, 0.115 and 0.028 in the Semai, Semelai, Temuan, and Jakun groups, respectively. A new 'breeding genetic distance' was applied to these gene frequencies and the Semelai and Temuan were found to be more closely related to each other, and to have considerably more evolutionary flexibility on this scale of 'micro-evolution' than the other two groups. The Semai and Jakun were more similar to each other on the basis of these ADA gene frequencies.
    Matched MeSH terms: Adenosine Deaminase/genetics*; Nucleoside Deaminases/genetics*
  10. Lai MY, Ooi CH, Lau YL
    Am J Trop Med Hyg, 2018 03;98(3):700-703.
    PMID: 29260656 DOI: 10.4269/ajtmh.17-0738
    The aim of this study was to develop a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method for specific diagnosis of Plasmodium knowlesi. With incubation at 37°C, the 18S rRNA gene of P. knowlesi was successfully amplified within 12 minutes. By adding a specifically designed probe to the reaction solution, the amplified RPA product can be visualized on a LF strip. The RPA assay exhibited high sensitivity with limits of detection down to 10 parasites/μL of P. knowlesi. Nonetheless, it was demonstrated that all P. knowlesi (N = 41) and other Plasmodium sp. (N = 25) were positive while negative samples (N = 8) were negative. Therefore, a combination of RPA and LF strip detection is a highly promising approach with the potential to be suitable for use in resource-limited settings.
    Matched MeSH terms: Plasmodium knowlesi/genetics; Recombinases/genetics*
  11. Li WJ, Xu CK, Ong SQ, Majid AHA, Wang JG, Li XZ
    PMID: 39326209 DOI: 10.1016/j.cbd.2024.101333
    Studying differences in transcriptomes across various development stages of insects is necessary to uncover the physiological and molecular mechanism underlying development and metamorphosis. We here present the first transcriptome data generated under Illumina Hiseq platform concerning Zeugodacus tau (Walker) larvae from Nanchang, China. In total, 11,702 genes were identified from 9 transcriptome libraries of three development stages of Z. tau larvae. 7219 differentially expressed genes (DEGs) were screened out from the comparisons between each two development stages of Z. tau larvae, and their roles in development and metabolism were analyzed. Comparative analyses of transcriptome data showed that there are 5333 DEGs between 1-day and 7-day old larvae, consisting of 1609 up-regulated and 3724 down-regulated genes. Expressions of DEGs were more abundant in L7 than in L1 and L3, which might be associated with metamorphosis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested the enrichment of metabolic process. KOG annotation further confirmed that 20-hydroxyecdysone (20E) pathway related genes Cyp4ac1_1, Cyp4aa1, Cyp313a4_3 were critical for the biosynthesis, transport, and catabolism of secondary metabolites and lipid transport and metabolism. Expression patterns of 8 DEGs were verified using quantitative real-time PCR (RT-qPCR). This study elucidated the DEGs and their roles underlying three development stages of Z. tau larvae, which provided valuable information for further functional genomic research.
    Matched MeSH terms: Metamorphosis, Biological/genetics; Insect Proteins/genetics
  12. Balakumar P, Jagadeesh G
    Cell Signal, 2025 Feb;126:111459.
    PMID: 39389177 DOI: 10.1016/j.cellsig.2024.111459
    Novel perspectives on the role of the renin-angiotensin-aldosterone system (RAAS) offer a groundbreaking understanding of the system's role in health and illness. Our understanding of the role of the RAAS in several diseases, such as heart failure, hypertension, metabolic disorders, and chronic renal disease, has been broadened by recent studies. Specific variations in RAAS pathways can affect the course of disease and response to treatment, as shown by genetic and molecular research. The dynamic and fast-evolving nature of RAAS research described in this special issue might transform our approach to managing renal, neurological, and cardiovascular health, among other disease conditions, including cancer.
    Matched MeSH terms: Cardiovascular Diseases/genetics; Heart Failure/genetics
  13. Eskandari A, Leow TC, Rahman MBA, Oslan SN
    Int Microbiol, 2024 Dec;27(6):1597-1631.
    PMID: 38489100 DOI: 10.1007/s10123-024-00498-7
    Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
    Matched MeSH terms: Enzymes, Immobilized/genetics; Yeasts/genetics
  14. Chan R, Mugisha CS, Chuenchob V, Moquin SA, Manjunatha UH, Jarrousse N, et al.
    SLAS Discov, 2024 Dec;29(8):100189.
    PMID: 39499968 DOI: 10.1016/j.slasd.2024.100189
    Over the past 25 years, the global community has faced challenges posed by three distinct outbreaks of coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of a novel alphacoronavirus canine CoV (CCoV-HuPn2018) in human patients in Malaysia underscores the potential for crossover infections to humans. The threat of the ever-evolving nature of viral infections as well as the lingering health and socioeconomic effects of the recent SARS-CoV-2 pandemic emphasize the urgent need for advanced antiviral drug screening tools that can be quickly implemented to strengthen preparedness and preventive measures against future outbreaks. Here, we present the development and validation of a novel RNA-fluorescence in situ hybridization (FISH) imaging assay as a 384-well, high-throughput rapid response platform for antiviral drug discovery. RNA-FISH is a powerful tool to visualize specific mRNA in cultured cells using a high-content imaging platform. The flexibility of RNA-FISH probe sets allows for the rapid design of viral genome-specific probes, enabling in vitro assay development to test for inhibition of viral replication by either biologic or small molecule inhibitors. Screening of 170 antiviral compounds in concentration-response demonstrates a strong correlation between the RNA-FISH assay and an immunofluorescence assay (IFA) for both human coronaviruses HCoV-OC43 and HCoV-229E. Additionally, we successfully applied this methodology in the context of CCoV strain 1-71, proving rapid development and deployment, opening new avenues for the evaluation of antiviral drugs to potential future emerging threats.
    Matched MeSH terms: RNA, Viral/genetics; Coronavirus/genetics
  15. Camacho F, Sarmiento ME, Reyes F, Kim L, Huggett J, Lepore M, et al.
    Int J Mycobacteriol, 2016 06;5(2):120-7.
    PMID: 27242221 DOI: 10.1016/j.ijmyco.2015.12.002
    OBJECTIVE/BACKGROUND: The development of new tools capable of targeting Mycobacterium tuberculosis (Mtb)-infected cells have potential applications in diagnosis, treatment, and prevention of tuberculosis. In Mtb-infected cells, CD1b molecules present Mtb lipids to the immune system (Mtb lipid-CD1b complexes). Because of the lack of CD1b polymorphism, specific Mtb lipid-CD1b complexes could be considered as universal Mtb infection markers. 2-Stearoyl-3-hydroxyphthioceranoyl-2'-sulfate-α-α'-d-trehalose (Ac2SGL) is specific for Mtb, and is not present in other mycobacterial species. The CD1b-Ac2SGL complexes are expressed on the surface of human cells infected with Mtb. The aim of this study was to generate ligands capable of binding these CD1b-Ac2SGL complexes.

    METHODS: A synthetic human scFv phage antibody library was used to select phage-displayed antibody fragments that recognized CD1b-Ac2SGL using CD1b-transfected THP-1 cells loaded with Ac2SGL.

    RESULTS: One clone, D11-a single, light-variable domain (kappa) antibody (dAbκ11)-showed high relative binding to the Ac2SGL-CD1b complex.

    CONCLUSION: A ligand recognizing the Ac2SGL-CD1b complex was obtained, which is a potential candidate to be further tested for diagnostic and therapeutic applications.

    Matched MeSH terms: Antibodies, Bacterial/genetics; Bacteriophages/genetics; Mycobacterium tuberculosis/genetics; Antigens, CD1/genetics; Single-Chain Antibodies/genetics*
  16. Khor WC, Puah SM, Tan JA, Puthucheary SD, Chua KH
    PLoS One, 2015;10(12):e0145933.
    PMID: 26710336 DOI: 10.1371/journal.pone.0145933
    Gram-negative bacilli of the genus Aeromonas are primarily inhabitants of the aquatic environment. Humans acquire this organism from a wide range of food and water sources as well as during aquatic recreational activities. In the present study, the diversity and distribution of Aeromonas species from freshwater lakes in Malaysia was investigated using glycerophospholipid-cholesterol acyltransferase (GCAT) and RNA polymerase sigma-factor (rpoD) genes for speciation. A total of 122 possible Aeromonas strains were isolated and confirmed to genus level using the API20E system. The clonality of the isolates was investigated using ERIC-PCR and 20 duplicate isolates were excluded from the study. The specific GCAT-PCR identified all isolates as belonging to the genus Aeromonas, in agreement with the biochemical identification. A phylogenetic tree was constructed using the rpoD gene sequence and all 102 isolates were identified as: A. veronii 43%, A. jandaei 37%, A. hydrophila 6%, A. caviae 4%, A. salmonicida 2%, A. media 2%, A. allosaccharophila 1%, A. dhakensis 1% and Aeromonas spp. 4%. Twelve virulence genes were present in the following proportions--exu 96%, ser 93%, aer 87%, fla 83%, enolase 70%, ela 62%, act 54%, aexT 33%, lip 16%, dam 16%, alt 8% and ast 4%, and at least 2 of these genes were present in all 102 strains. The ascV, aexU and hlyA genes were not detected among the isolates. A. hydrophila was the main species containing virulence genes alt and ast either present alone or in combination. It is possible that different mechanisms may be used by each genospecies to demonstrate virulence. In summary, with the use of GCAT and rpoD genes, unambiguous identification of Aeromonas species is possible and provides valuable data on the phylogenetic diversity of the organism.
    Matched MeSH terms: Acyltransferases/genetics; Aeromonas/genetics*; DNA-Directed RNA Polymerases/genetics; Sigma Factor/genetics; Virulence/genetics
  17. Joyce-Tan SM, Zain SM, Abdul Sattar MZ, Abdullah NA
    J Diabetes Res, 2016;2016:2161376.
    PMID: 26682227 DOI: 10.1155/2016/2161376
    Genome-wide association studies (GWAS) have been successfully used to call for variants associated with diseases including type 2 diabetes mellitus (T2DM). However, some variants are not included in the GWAS to avoid penalty in multiple hypothetic testing. Thus, candidate gene approach is still useful even at GWAS era. This study attempted to assess whether genetic variations in the renin-angiotensin system (RAS) and their gene interactions are associated with T2DM risk. We genotyped 290 T2DM patients and 267 controls using three genes of the RAS, namely, angiotensin converting enzyme (ACE), angiotensinogen (AGT), and angiotensin II type 1 receptor (AGTR1). There were significant differences in allele frequencies between cases and controls for AGT variants (P = 0.05) but not for ACE and AGTR1. Haplotype TCG of the AGT was associated with increased risk of T2DM (OR 1.92, 95% CI 1.15-3.20, permuted P = 0.012); however, no evidence of significant gene-gene interactions was seen. Nonetheless, our analysis revealed that the associations of the AGT variants with T2DM were independently associated. Thus, this study suggests that genetic variants of the RAS can modestly influence the T2DM risk.
    Matched MeSH terms: Angiotensinogen/genetics*; Diabetes Mellitus, Type 2/genetics*; Peptidyl-Dipeptidase A/genetics; Renin-Angiotensin System/genetics*; Receptor, Angiotensin, Type 1/genetics
  18. Rajasuriar R, Kong YY, Nadarajah R, Abdullah NK, Spelman T, Yuhana MY, et al.
    J Transl Med, 2015;13:30.
    PMID: 25622527 DOI: 10.1186/s12967-015-0391-6
    HIV-infected individuals have an increased risk of cardiovascular disease (CVD). T-allele carriers of the CD14 C-260T single-nucleotide polymorphism (SNP) have reported increased expression of the LPS-binding receptor, CD14 and inflammation in the general population. Our aim was to explore the relationship of this SNP with monocyte/macrophage activation and inflammation and its association with sub-clinical atherosclerosis in HIV-infected individuals.
    Matched MeSH terms: Inflammation/genetics; Macrophage Activation/genetics*; HIV Infections/genetics*; Antigens, CD14/genetics*; Polymorphism, Single Nucleotide/genetics*
  19. Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C
    Asian Pac J Cancer Prev, 2014;15(21):9071-5.
    PMID: 25422181
    BACKGROUND: microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined.

    MATERIALS AND METHODS: miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology.

    RESULTS: miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues.

    CONCLUSIONS: LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.

    Matched MeSH terms: Carcinoma, Squamous Cell/genetics*; Head and Neck Neoplasms/genetics*; Inflammation/genetics*; Biomarkers, Tumor/genetics*; MicroRNAs/genetics*
  20. Tohyama J, Nakashima M, Nabatame S, Gaik-Siew C, Miyata R, Rener-Primec Z, et al.
    J Hum Genet, 2015 Apr;60(4):167-73.
    PMID: 25631096 DOI: 10.1038/jhg.2015.5
    Recent progress in genetic analysis reveals that a significant proportion of cryptogenic epileptic encephalopathies are single-gene disorders. Mutations in numerous genes for early-onset epileptic encephalopathies have been rapidly identified, including in SPTAN1, which encodes α-II spectrin. The aim of this review is to delineate SPTAN1 encephalopathy as a distinct clinical syndrome. To date, a total of seven epileptic patients with four different in-frame SPTAN1 mutations have been identified. The major clinical features of SPTAN1 mutations include epileptic encephalopathy with hypsarrhythmia, no visual attention, acquired microcephaly, spastic quadriplegia and severe intellectual disability. Brainstem and cerebellar atrophy and cerebral hypomyelination, as observed by magnetic resonance imaging, are specific hallmarks of this condition. A milder variant is characterized by generalized epilepsy with pontocerebellar atrophy. Only in-frame SPTAN1 mutations in the last two spectrin repeats in the C-terminal region lead to dominant negative effects and these specific phenotypes. The last two spectrin repeats are required for α/β spectrin heterodimer associations and the mutations can alter heterodimer formation between the two spectrins. From these data we suggest that SPTAN1 encephalopathy is a distinct clinical syndrome owing to specific SPTAN1 mutations. It is important that this syndrome is recognized by pediatric neurologists to enable proper diagnostic work-up for patients.
    Matched MeSH terms: Brain Diseases/genetics*; Carrier Proteins/genetics*; Epilepsy/genetics*; Microfilament Proteins/genetics*; Spectrin/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links