Displaying publications 1521 - 1540 of 1728 in total

Abstract:
Sort:
  1. Teh SS, Hock Ong AS, Mah SH
    J Oleo Sci, 2017;66(11):1183-1191.
    PMID: 29093377 DOI: 10.5650/jos.ess17078
    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  2. Lee TH, Wani WA, Koay YS, Kavita S, Tan ETT, Shreaz S
    Food Res Int, 2017 10;100(Pt 1):14-27.
    PMID: 28873672 DOI: 10.1016/j.foodres.2017.07.036
    Edible bird's nest (EBN) is an expensive animal bioproduct due to its reputation as a food and delicacy with diverse medicinal properties. One kilogram of EBN costs ~$6000 in China. EBN and its products are consumed in mostly Asian countries such as China, Hong Kong, Taiwan, Singapore, Malaysia, Indonesia, Vietnam and Thailand, making up almost 1/3 of world population. The rapid growth in EBN consumption has led to a big rise in the trade scale of its global market. Presently, various fake materials such as tremella fungus, pork skin, karaya gum, fish swimming bladder, jelly, agar, monosodium glutamate and egg white are used to adulterate EBNs for earning extra profits. Adulterated or fake EBN may be hazardous to the consumers. Thus, it is necessary to identify of the adulterants. Several sophisticated techniques based on genetics, immunochemistry, spectroscopy, chromatography and gel electrophoresis have been used for the detection of various types of adulterants in EBN. This article describes the recent advances in the authentication methods for EBN. Different genetic, immunochemical, spectroscopic and analytical methods such as genetics (DNA) based techniques, enzyme-linked immunosorbent assays, Fourier transform infrared and Raman spectroscopic techniques, and chromatographic and gel electrophoretic methods have been discussed. Besides, significance of the reported methods that might pertain them to applications in EBN industry has been described. Finally, efforts have been made to discuss the challenges and future perspectives of the authentication methods for EBN.
    Matched MeSH terms: Chromatography
  3. Kumaran S, Pandurangan AK, Shenbhagaraman R, Esa NM
    Int J Med Mushrooms, 2017;19(8):675-684.
    PMID: 29199567 DOI: 10.1615/IntJMedMushrooms.2017021274
    The growth and lectin production of Ganoderma applanatum, a white rot fungus, was optimized in broth cultures. The fungus was found to have a higher growth rate and higher lectin activity when grown in a medium adjusted to pH 6.5 at 26°C under stationary conditions. Expression of lectin activity started in 5-day-old mycelial culture; maximum activity was expressed after the 15th day of incubation. Among the various carbon and nitrogen sources tested, the carbon source sucrose and the nitrogen source yeast extract support maximum growth and lectin production. Lectin from G. applanatum was purified by ammonium sulfate precipitation and ion exchange chromatography. The purified fraction revealed a single band with a molecular weight of 35.0 kDa. Moreover, carbohydrates such as mannitol, glucose, sucrose, maltose, mannose, galactose, sorbose, and fructose were found to inhibit the hemagglutinating activity of the lectin. The purified lectins from G. applanatum contain cytotoxic and proapoptotic activities against HT-29 colon adenocarcinoma cells.
    Matched MeSH terms: Chromatography, Ion Exchange
  4. Aziz MY, Hoffmann KJ, Ashton M
    J Pharm Sci, 2018 05;107(5):1461-1467.
    PMID: 29352982 DOI: 10.1016/j.xphs.2018.01.009
    The potential of the antimalarial piperaquine and its metabolites to inhibit CYP3A was investigated in pooled human liver microsomes. CYP3A activity was measured by liquid chromatography-tandem mass spectrometry as the rate of 1'-hydroxymidazolam formation. Piperaquine was found to be a reversible, potent inhibitor of CYP3A with the following parameter estimates (%CV): IC50 = 0.76 μM (29), Ki = 0.68 μM (29). In addition, piperaquine acted as a time-dependent inhibitor with IC50 declining to 0.32 μM (28) during 30-min pre-incubation. Time-dependent inhibitor estimates were kinact = 0.024 min-1 (30) and KI = 1.63 μM (17). Metabolite M2 was a highly potent reversible inhibitor with estimated IC50 and Ki values of 0.057 μM (17) and 0.043 μM (3), respectively. M1 and M5 metabolites did not show any inhibitory properties within the limits of assay used. Average (95th percentile) simulated in vivo areas under the curve of midazolam increased 2.2-fold (3.7-fold) on the third which is the last day of piperaquine dosing, whereas for its metabolite M2, areas under the curve of midazolam increased 7.7-fold (13-fold).
    Matched MeSH terms: Chromatography, High Pressure Liquid
  5. Raja Nhari RMH, Khairil Mokhtar NF, Hanish I, Hamid M, Mohamed Rashidi MAA, Shahidan NM
    PMID: 29285986 DOI: 10.1080/19440049.2017.1420920
    Detection of porcine plasma using indirect ELISA was developed using mAb B4E1 for the prevention of their usage in human food that creates religious and health conflicts. The immunoassay has a CV 
    Matched MeSH terms: Chromatography, High Pressure Liquid
  6. Ima-Nirwana S, Ahmad SN, Yee LJ, Loh HC, Yew SF, Norazlina M, et al.
    Singapore Med J, 2007 Mar;48(3):200-6.
    PMID: 17342287
    The short-term and long- term effects of heated soy oil on bone metabolism in ovariectomised Sprague-Dawley rats were studied.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  7. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Chromatography, Gas
  8. Khalit WN, Tay KS
    Environ Sci Pollut Res Int, 2016 Feb;23(3):2521-9.
    PMID: 26423291 DOI: 10.1007/s11356-015-5470-y
    This study investigated the reaction kinetics and the transformation by-products of acebutolol during aqueous chlorination. Acebutolol is one of the commonly used β-blockers for the treatment of cardiovascular diseases. It has been frequently detected in the aquatic environment. In the kinetics study, the second-order rate constant for the reaction between acebutolol and chlorine (k app) was determined at 25 ± 0.1 °C. The degradation of acebutolol by free available chlorine was highly pH dependence. When the pH increased from 6 to 8, it was found that the k app for the reaction between acebutolol and free available chlorine was increased from 1.68 to 11.2 M(-1) min(-1). By comparing with the reported k app values, the reactivity of acebutolol toward free available chlorine was found to be higher than atenolol and metoprolol but lower than nadolol and propranolol. Characterization of the transformation by-products formed during the chlorination of acebutolol was carried out using liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. Seven major transformation by-products were identified. These transformation by-products were mainly formed through dealkylation, hydroxylation, chlorination, and oxidation reactions.
    Matched MeSH terms: Chromatography, Liquid
  9. Anezaki K, Kannan N, Nakano T
    Environ Sci Pollut Res Int, 2015 Oct;22(19):14478-88.
    PMID: 24809497 DOI: 10.1007/s11356-014-2985-6
    This study reports the concentrations and congener partners of polychlorinated biphenyls (PCBs) in commercially available paints. Polycyclic-type pigments containing dioxazine violet (pigment violet (PV) 23, PV37) and diketopyrrolopyrrole (PR254, PR255) were found to contain PCB-56, PCB-77, PCB-40, PCB-5, and PCB-12, and PCB-6, PCB-13, and PCB-15, respectively, as major congeners. Dioxazine violet is contaminated with by-products during synthesis from o-dichlorobenzene, which is used as a solvent during synthesis, and diketopyrrolopyrrole is contaminated with by-products during synthesis from p-chlorobenzonitrile. The concentration of PCBs in paint containing PV23 or PV37 was 0.050-29 mg/kg, and toxic equivalency (TEQ) values ranged 1.1-160 pg-TEQ/g. The concentration of PCBs in paint containing PR254 or PR255 was 0.0019-2.4 mg/kg. Naphthol AS is an azo-type pigment, and PCB-52 was detected in paint containing pigment red (PR) 9 with 2,5-dichloroaniline as its source. PCB-146, PCB-149, and PCB-153 were identified from paint containing PR112 produced from 2,4,5-trichloroaniline, as major congeners. These congeners have chlorine positions similar to aniline, indicating that these congeners are by-products obtained during the synthesis of pigments. The concentrations of PCBs in paints containing PR9 and PR112 were 0.0042-0.43 and 0.0044-3.8 mg/kg, respectively. The corresponding TEQ for PR112 was 0.0039-8.6 pg-TEQ/g.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  10. Neoh CH, Lam CY, Lim CK, Yahya A, Ibrahim Z
    Environ Sci Pollut Res Int, 2014 Mar;21(6):4397-408.
    PMID: 24327114 DOI: 10.1007/s11356-013-2350-1
    Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  11. Soda W, Noble AD, Suzuki S, Simmons R, Sindhusen LA, Bhuthorndharaj S
    J Environ Qual, 2006 Oct 27;35(6):2293-301.
    PMID: 17071900
    Acid waste bentonite is a byproduct from vegetable oil bleaching that is acidic (pH < 3.0) and hydrophobic. These materials are currently disposed of in landfills and could potentially have a negative impact on the effective function of microbes that are intolerant of acidic conditions. A study was undertaken using three different sources of acid waste bentonites, namely soybean oil bentonite (SB), palm oil bentonite (PB), and rice bran oil bentonite (RB). These materials were co-composted with rice husk, rice husk ash, and chicken litter to eliminate their acid reactivity and hydrophobic nature. The organic carbon (OC) content, pH, exchangeable cations, and cation exchange capacity (CEC) of the acid-activated bentonites increased significantly after the co-composting phase. In addition, the hydrophobic nature of these materials as measured using the water drop penetration time (WDPT) decreased from >10 800 s to 16 to 80 s after composting. Furthermore, these composted materials showed positive impacts on soil physical attributes including specific surface area, bulk density, and available water content for crop growth. Highly significant increases in maize biomass (Zea mays L.) production over two consecutive cropping cycles was observed in treatments receiving co-composted bentonite. The study clearly demonstrates the potential for converting an environmentally hazardous material into a high-quality soil conditioner using readily available agricultural byproducts. It is envisaged that the application of these composted acid waste bentonites to degraded soils will increase productivity and on-farm income, thus contributing toward food security and poverty alleviation.
    Matched MeSH terms: Chromatography, Ion Exchange
  12. Bae N, Li L, Lödl M, Lubec G
    Proc Natl Acad Sci U S A, 2012 Oct 30;109(44):17920-4.
    PMID: 23071323 DOI: 10.1073/pnas.1209632109
    Protein profiling has revealed the presence of glacontryphan-M, a peptide toxin identified only in the sea snail genus Conus, in the wings of Hebomoia glaucippe (HG). The wings and body of HG were homogenized and the proteins were extracted and analyzed by 2D gel electrophoresis with subsequent in-gel digestion. Posttranslational protein modifications were detected and analyzed by nano-LC-MS/MS. An antibody was generated against glacontryphan-M, and protein extracts from the wings of HG samples from Malaysia, Indonesia, and the Philippines were tested by immunoblotting. Glacontryphan-M was unambiguously identified in the wings of HG containing the following posttranslational protein modifications: monoglutamylation at E55, methylation at E53, quinone modification at W61, cyanylation at C56, and amidation of the C terminus at G63. Immunoblotting revealed the presence of the toxin in the wings of HG from all origins, showing a single band for glacontryphan-M in HG samples from Malaysia and Philippines and a double band in HG samples from Indonesia. Intriguingly, sequence analysis indicated that the Conus glacontryphan is identical to that of HG. The toxin may function as a defense against diverse predators, including ants, mantes, spiders, lizards, green frogs, and birds.
    Matched MeSH terms: Chromatography, Liquid
  13. Ceesay A, Nor Shamsudin M, Aliyu-Paiko M, Ismail IS, Nazarudin MF, Mohamed Alipiah N
    Biomed Res Int, 2019;2019:2640684.
    PMID: 31119160 DOI: 10.1155/2019/2640684
    The aim of the present study was to extract and characterize bioactive components from separate body organs of Holothuria leucospilota. Preliminary qualitative assessment of the crude extracts was positive for phenols, terpenoids, carbohydrates, flavonoids, saponins, glycosides, cardiac glycosides, steroids, phlobatannins, and tannins in all body organs evaluated. Phenolics were the most abundant group of bioactives accounting for approximately 80%. The extraction solvent mixtures that yielded most compounds evaluated were methanol/acetone (3:1, v:v) and methanol/distilled water (3:1, v:v). In other analyses, GC-MS data revealed diverse metabolic and biologically active compounds, where those in high concentrations included 2-Pentanone, 4-hydroxy-4-methyl- among the ketones; phenol- 2,4-bis(1,1-dimethylethyl)-, a phenol group; and 2-Chlorooctane, a hydrocarbon. Among FA and their methyl/ethyl esters, n-hexadecanoic acid, 5,8,11,14-eicosatetraenoic acid ethyl ester (arachidonic acid), and 5,8,11,14,17-eicosapentaenoic acid methyl ester (EPA) were among the most abundant FAMEs accounting for approximately 50% of the subgroups measured. Data from GC-FID analysis revealed methyl laurate (C12:0), methyl myristate (C14:0), methyl palmitate (C16:0), and methyl stearate (18:0) methyl esters as the most abundant saturated FA, whereas cis-9-oleic methyl ester (C18:1) and methyl linoleate (C18:2) were found as the major monounsaturated FA and PUFA FAMEs, respectively, in the body wall of the species. Taken together, the extraction and characterization of different categories of metabolically and biologically active compounds in various organ extracts of H. leucospilota suggest that the species is potentially a rich source of cholesterol-lowering, antioxidant, antimicrobial, and anticancer agents. These substances are known to benefit human health and assist in disease prevention. These findings justify the use of sea cucumbers in traditional folklore medication and the current interest and attention focused on the species to mine for bioactives in new drugs research.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  14. Nayan N, van Erven G, Kabel MA, Sonnenberg AS, Hendriks WH, Cone JW
    J Sci Food Agric, 2019 Jun;99(8):4054-4062.
    PMID: 30737799 DOI: 10.1002/jsfa.9634
    BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw.

    RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.

    CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  15. Jaafar HZ, Ibrahim MH, Karimi E
    Molecules, 2012 May 25;17(6):6331-47.
    PMID: 22634843 DOI: 10.3390/molecules17066331
    A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO₂ (400, 800 and 1,200 μmol·mol⁻¹) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO₂ concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO₂ levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO₂ (1,200 μmol·mol⁻¹) exposure, gallic acid increased tremendously, especially in var. alata and pumila (101-111%), whilst a large quercetin increase was noted in var. lanceolata (260%), followed closely by alata (201%). Kaempferol, although detected under ambient CO₂ conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100%) and pumila (298~433%). Meanwhile, pyragallol and rutin were only seen in var. alata (810 μg·g⁻¹ DW) and pumila (25 μg·g⁻¹ DW), respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO₂ enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO₂ levels implying the possible improvement of health-promoting quality of Malaysian L. pumila under high CO₂ enrichment conditions.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  16. Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N
    PLoS One, 2019;14(5):e0197644.
    PMID: 31145747 DOI: 10.1371/journal.pone.0197644
    Stone fish is an under-utilized sea cucumber with many health benefits. Hydrolysates with strong ACE-inhibitory effects were generated from stone fish protein under the optimum conditions of hydrolysis using bromelain and fractionated based on hydrophobicity and isoelectric properties of the constituent peptides. Five novel peptide sequences with molecular weight (mw) < 1000 daltons (Da) were identified using LC-MS/MS. The peptides including Ala-Leu-Gly-Pro-Gln-Phe-Tyr (794.44 Da), Lys-Val-Pro-Pro-Lys-Ala (638.88 Da), Leu-Ala-Pro-Pro-Thr-Met (628.85 Da), Glu-Val-Leu-Ile-Gln (600.77 Da) and Glu-His-Pro-Val-Leu (593.74 Da) were evaluated for ACE-inhibitory activity and showed IC50 values of 0.012 mM, 0.980 mM, 1.310 mM, 1.440 mM and 1.680 mM, respectively. The ACE-inhibitory effects of the peptides were further verified using molecular docking study. The docking results demonstrated that the peptides exhibit their effect mainly via hydrogen and electrostatic bond interactions with ACE. These findings provide evidence about stone fish as a valuable source of raw materials for the manufacture of antihypertensive peptides that can be incorporated to enhance therapeutic relevance and commercial significance of formulated functional foods.
    Matched MeSH terms: Chromatography, Liquid
  17. Hee AK, Tan KH
    J Chem Ecol, 2004 Nov;30(11):2127-38.
    PMID: 15672660 DOI: 10.1023/B:JOEC.0000048778.02561.70
    Pharmacophagy of methyl eugenol (ME)--a highly potent male attractant, by Bactrocera papayae results in the hydroxylation of ME to sex pheromonal components, 2-ally-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (CF). These compounds, which are also male attractants, are then sequestered and stored in the rectal gland prior to their release during courtship at dusk. Chemical analyses of the digestive tract (excluding the crop and rectal gland) showed the absence of the sex pheromonal components and their precursor, ME. However, B. papayae males were attracted to and fed on the ME-fed male hemolymph extracts but not on hemolymph extracts of ME-deprived males. After thin layer chromatography in a hexane:ethyl acetate solvent system, flies were attracted to and fed on the original point on the TLC plate where the hemolymph extract had been spotted, suggesting that the pheromone components were bound in polar complexes. Chemical analyses of the ME-fed male hemolymph and crop extracts revealed the presence of the sex pheromonal components. The presence of the ME-derived pheromonal components and the absence of ME in the hemolymph suggest that the hemolymph is involved in the transportation of sex pheromonal components from the crop to the rectal gland.
    Matched MeSH terms: Chromatography, Thin Layer
  18. Stepien M, Keski-Rahkonen P, Kiss A, Robinot N, Duarte-Salles T, Murphy N, et al.
    Int J Cancer, 2021 Feb 01;148(3):609-625.
    PMID: 32734650 DOI: 10.1002/ijc.33236
    Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. Current knowledge on metabolic perturbations in HCC is derived mostly from case-control designs, with sparse information from prospective cohorts. Our objective was to apply comprehensive metabolite profiling to detect metabolites whose serum concentrations are associated with HCC development, using biological samples from within the prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (>520 000 participants), where we identified 129 HCC cases matched 1:1 to controls. We conducted high-resolution untargeted liquid chromatography-mass spectrometry-based metabolomics on serum samples collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic regression was applied controlling for dietary habits, alcohol consumption, smoking, body size, hepatitis infection and liver dysfunction. Corrections for multiple comparisons were applied. Of 9206 molecular features detected, 220 discriminated HCC cases from controls. Detailed feature annotation revealed 92 metabolites associated with HCC risk, of which 14 were unambiguously identified using pure reference standards. Positive HCC-risk associations were observed for N1-acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, l,l-cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid and 7-methylguanine. Inverse risk associations were observed for retinol, dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl hydroxychroman and creatine. Discernible differences for these metabolites were observed between cases and controls up to 10 years prior to diagnosis. Our observations highlight the diversity of metabolic perturbations involved in HCC development and replicate previous observations (metabolism of bile acids, amino acids and phospholipids) made in Asian and Scandinavian populations. These findings emphasize the role of metabolic pathways associated with steroid metabolism and immunity and specific dietary and environmental exposures in HCC development.
    Matched MeSH terms: Chromatography, Liquid
  19. Wan Mohd Zin RM, Ahmad Kamil ZI, Tuan Soh TR, Embong M, Wan Mohamud WN
    BMC Res Notes, 2013 Dec 18;6:540.
    PMID: 24344903 DOI: 10.1186/1756-0500-6-540
    BACKGROUND: Measurement of HbA1c has been widely used for long-term monitoring and management of diabetes control. There is increasing use of point-of-care (POC) devices for measuring HbA1c where quicker results would allow immediate clinical management decisions to be made. Therefore, it is important to evaluate and compare the performance of such devices to the reference laboratory method.

    FINDINGS: A total of 274 venous blood was collected from normal healthy adults during the community screening programmes. The performance of POC devices, Afinion and Quo-test were compared to central laboratory HPLC method; Adams A1c HA 8160. Both POC devices showed good correlation to HA 8160 with r = 0.94 (p < 0.001) and r = 0.95 (p < 0.001) for Afinion and Quo-test respectively. The means difference were statistically higher between POC and HA 8160 with 0.23% (95% CI 0.19-0.26, p < 0.001) and 0.29% (95% CI 0.24-0.34, p < 0.001) for Afinion and Quo-test respectively.

    CONCLUSIONS: Both POC devices could be considered in health clinics for diabetes management but not to be used for the diagnostic purposes.

    Matched MeSH terms: Chromatography, High Pressure Liquid
  20. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Chromatography, Liquid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links