Displaying publications 141 - 160 of 995 in total

Abstract:
Sort:
  1. Fox L, Santaolalla A, Handford J, Sullivan R, Torode J, Vanderpuye V, et al.
    JCO Glob Oncol, 2023 Aug;9:e2300111.
    PMID: 37561978 DOI: 10.1200/GO.23.00111
    PURPOSE: The post-COVID-19 funding landscape for cancer research globally has become increasingly challenging, particularly in resource-challenged regions (RCRs) lacking strong research ecosystems. We aimed to produce a list of priority areas for cancer research in countries with limited resources, informed by researchers and patients.

    METHODS: Cancer experts in lower-resource health care systems (as defined by the World Bank as low- and middle-income countries; N = 151) were contacted to participate in a modified consensus-seeking Delphi survey, comprising two rounds. In round 1, participants (n = 69) rated predetermined areas of potential research priority (ARPs) for importance and suggested missing ARPs. In round 2, the same participants (n = 49) rated an integrated list of predetermined and suggested ARPs from round 1, then undertook a forced choice priority ranking exercise. Composite voting scores (T-scores) were used to rank the ARPs. Importance ratings were summarized descriptively. Findings were discussed with international patient advocacy organization representatives.

    RESULTS: The top ARP was research into strategies adapting guidelines or treatment strategies in line with available resources (particularly systemic therapy) (T = 83). Others included cancer registries (T = 62); prevention (T = 52); end-of-life care (T = 53); and value-based and affordable care (T = 51). The top COVID-19/cancer ARP was strategies to incorporate what has been learned during the pandemic that can be maintained posteriorly (T = 36). Others included treatment schedule interruption (T = 24); cost-effective reduction of COVID-19 morbidity/mortality (T = 19); and pandemic preparedness (T = 18).

    CONCLUSION: Areas of strategic priority favored by cancer researchers in RCRs are related to adaptive treatment guidelines; sustainable implementation of cancer registries; prevention strategies; value-based and affordable cancer care; investments in research capacity building; epidemiologic work on local risk factors for cancer; and combatting inequities of prevention and care access.

    Matched MeSH terms: Ecosystem
  2. Fadeeva Z, Van Berkel R
    J Environ Manage, 2021 Jan 01;277:111457.
    PMID: 33045648 DOI: 10.1016/j.jenvman.2020.111457
    Marine plastic pollution (MPP) is an urgent environmental and socio-economic problem. MPP amounts to 300 million tons annually, originates largely from land-based sources and severely impacts marine ecosystem, harms livelihoods and causes costs for businesses and governments. Plastics permeate the whole width and depth of seas and oceans, near well-developed coastal zones and equally in remotest corners. This undermines economic and social value of the oceans, particularly in terms of fisheries productivity and tourism. The G20 members, responsible for about two-thirds of global plastic waste, recognize the problem and undertake preventive measures - individually and collectively. Yet, are there efficient, effective and sufficient given the urgency of MPP and the contribution of G20 countries. This article highlights existing policies and identifies further policy options using a custom framework for MPP policy that merges Circular Economy (CE) and life-cycle perspectives.
    Matched MeSH terms: Ecosystem
  3. Teow HH, Ahmed PK, Nair MS, Vaithilingam S
    Lancet Planet Health, 2024 Apr;8 Suppl 1:S20.
    PMID: 38632916 DOI: 10.1016/S2542-5196(24)00085-8
    BACKGROUND: Green education is an essential precursor to promoting long-term sustainable practices and fostering environmentally conscious behaviours, especially among the younger generations. Such education equips individuals with the knowledge, awareness, and experiences necessary for green behavioural shifts, empowering them to engage actively in sustainable practices in the long run, which is essential for ensuring environmental sustainability. However, green education practices and policies vary among the countries of the Association of Southeast Asian Nations (ASEAN) owing to different levels of socioeconomic development, national priorities, and capacities of each member state. We aimed to analyse and compare the disparities in green education among pace-setter, maturing, and emerging ASEAN countries.

    METHODS: We used a case-study approach-a desktop analysis based on journal articles, country reports, newspaper articles, and other sources from the past 10 years-to analyse and compare the green education disparities among pace-setter, maturing, and emerging ASEAN countries.

    FINDINGS: As a pace-setter ASEAN country, Singapore has made impressive progress in promoting green education through the effective implementation of pragmatic policies and impactful green education initiatives. Furthermore, the country has established extensive formal and informal green education programmes that closely align with the Singapore Green Plan 2030. By contrast, maturing ASEAN countries are making incremental progress in incorporating green education into their formal education systems. However, challenges faced by these countries include a shortage of well-trained teachers, the lack of specific green education subjects in school syllabuses, and financial constraints. Despite these challenges, innovative approaches-such as partnerships with non-governmental organisations (eg, the World Wide Fund for Nature)-have emerged as promising strategies to promote green education within these maturing nations. Emerging ASEAN countries face the biggest challenges in promoting green education. Competing national priorities, political instability, limited funding and resources, inadequate infrastructure, and a lack of qualified educators pose challenging barriers to advancing green education within emerging ASEAN nations.

    INTERPRETATION: This study provides insights into the best practices and challenges surrounding green education within pace-setter, maturing, and emerging ASEAN countries. To address the disparities in green education among these countries, there is a need to adopt a holistic ecosystem framework characterised by the so-called 8i enablers, namely infrastructure (eg, well-equipped laboratories and learning spaces), infostructure (eg, advanced teaching technologies), intellectual capital (eg, well-trained educators), integrity systems (eg, efficient green education governance systems), incentives (eg, public and private funding for green education initiatives), institutions (ie, strong institutional leaders), interaction (ie, cooperation and collaboration among relevant stakeholders), and internationalisation (eg, leveraging regional and international partnerships to access expertise and resources).

    FUNDING: None.

    Matched MeSH terms: Ecosystem*
  4. Danish-Daniel M, Gan HY, Gan HM, Saari NA, Usup G
    Genome Announc, 2014;2(5).
    PMID: 25301654 DOI: 10.1128/genomeA.01015-14
    Nitratireductor basaltis strain UMTGB225 is a Gram-negative bacterium isolated from a marine tunicate found in Bidong Island, Terengganu, Malaysia. In this study, the genome of Nitratireductor basaltis UMTGB225 was sequenced to gain insight into the role of this bacterium and its association with tunicate hosts in a coral reef habitat.
    Matched MeSH terms: Ecosystem
  5. Ejria Saleh, Gallagher, John Barry, Tzuen, Kiat Yap
    MyJurnal
    Seagrasses provide a range of marine ecosystem services. These include coastal protection, biodiversity, provision of food for various organisms, breeding and nursery habitats for many marine species, and carbon storage. Increasing anthropogenic pressures have contributed to the decline of seagrass habitats. Transplantation is one of the solutions to increase seagrass coverage and resilience. What is often overlooked, however, is the ability of this tropical ecosystem to attract and support faunal assemblages that may impinge on the success of the transplantation. A pilot study on seagrass transplantation at Gaya Island (Kota Kinabalu, Sabah) was intended for observing its stability and species of fauna that develop association with this vegetation. The study covered the southwest and northeast monsoons. Mixed seagrass species were planted on approximately 50% of 30 m 2 transplantation areas. Monitoring of the planted seagrass was carried out in five phases (T1-T5) from September 2016 to April 2018. Weekly observations were made by SCUBA diving. Identification of associated fauna was done on the spot and was based on morphological characteristics. During the T1 (September to December 2016) the seagrass coverage was reduced to 41% due to strong waves generated by the northeast monsoon. However, the seagrass coverage increased ( 66 %) during the southwest monsoon (T2 - T4) in 2017. In early 2018 (T5), the seagrass coverage again reduced (about 18%) due to strong waves but recovered again at the end of the monitoring period (April 2018). A total of 30 species of fauna that were identified consisted of 9 resident and 21 non-resident species. Physical structure of transplanted seagrass created a microhabitat, and increased the food availability and abundance, which attracted many species of different trophic levels.
    Matched MeSH terms: Ecosystem
  6. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3292-302.
    PMID: 22006969 DOI: 10.1098/rstb.2011.0049
    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
    Matched MeSH terms: Ecosystem*
  7. Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, et al.
    Sci Rep, 2017 05 18;7(1):2135.
    PMID: 28522869 DOI: 10.1038/s41598-017-02312-z
    The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51-55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
    Matched MeSH terms: Ecosystem
  8. Nurul Ashikeen Ab Razak, Mustafa Abdul Rahman, Tuen AA
    Sains Malaysiana, 2016;45:1089-1095.
    Family Scolopacidae includes the sandpipers, shanks, snipes, godwits and curlews. Systematic classifications of shorebirds
    at the higher level have been successfully resolved. Nevertheless, the phylogeny of shorebirds in the familial level is still
    poorly understood. Thus, this phylogenetic study on Scolopacidae was conducted upon the framework provided by the first
    sequence-based species-level phylogeny within the shorebirds to determine the phylogenetic relationships among family
    members of Scolopacidae in West Borneo, Sarawak using combined gene markers, mtDNA Cytochrome Oxidise I (COI)
    and nucDNA Recombinant Activating Gene 1 (RAG1). A total of 1,342 base pair (bp) were inferred from both COI and RAG1
    gene from 45 sequences constituted of 15 species Scolopacidae sampled from Sarawak namely Xenus cinereus, Actitis
    hypoleucos, Tringa totanus, Tringa glareola, Tringa stagnatilis, Heteroscelus brevipes, Calidris alba, Calidris ruficollis,
    Calidris ferruginea, Calidris tenuirostris, Calidris alpina, Gallinago stenura, Gallinago megala, Numenius arquata, and
    Numenius phaeopus. The phylogenetic tree was constructed with Charadrius mongulus derived as an outgroup. The
    Bayesian Inference (BI) tree constructed supported grouping of species into several lineages of Numeniinae, Calidrinae,
    Scolopacinae and Tringinae. The groupings of species into several lineages correlate with morphological features that
    contribute to their adaptation and ability of the species to fit to their ecosystems.
    Matched MeSH terms: Ecosystem
  9. Wardiatno Y, Mardiansyah, Prartono T, Tsuchiya M
    Trop Life Sci Res, 2015 Apr;26(1):53-65.
    PMID: 26019747
    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ(13)C and δ(15)N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: -22.4‰ and 8.6‰ for Cerithidea sp., -25.06‰ and 8‰ for C. mustelina, -22.58‰ and 8‰ for P. verruculata, -24.3‰ and 10.6‰ for unidentified Grapsidae, -21.87 ‰ and 11.5 ‰ for Uca sp., -29.81‰ and 11‰ for K. candel, and -24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers.
    Matched MeSH terms: Ecosystem
  10. Gephart JA, Henriksson PJG, Parker RWR, Shepon A, Gorospe KD, Bergman K, et al.
    Nature, 2021 Sep;597(7876):360-365.
    PMID: 34526707 DOI: 10.1038/s41586-021-03889-2
    Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.
    Matched MeSH terms: Ecosystem*
  11. Wernli D, Søgaard Jørgensen P, Parmley EJ, Majowicz SE, Lambraki I, Carson CA, et al.
    Lancet Planet Health, 2023 Jul;7(7):e630-e637.
    PMID: 37438004 DOI: 10.1016/S2542-5196(23)00128-6
    Social-ecological systems conceptualise how social human systems and ecological natural systems are intertwined. In this Personal View, we define the scope and applicability of social-ecological resilience to antimicrobial resistance. Resilience to antimicrobial resistance corresponds to the capacity to maintain the societal benefits of antimicrobial use and One Health systems' performance in the face of the evolutionary behaviour of microorganisms in response to antimicrobial use. Social-ecological resilience provides an appropriate framework to make sense of the disruptive impacts resulting from the emergence and spread of antimicrobial resistance; capture the diversity of strategies needed to tackle antimicrobial resistance and to live with it; understand the conditions that underpin the success or failure of interventions; and appreciate the need for adaptive and coevolutionary governance. Overall, resilience thinking is essential to improve understanding of how human societies dynamically can cope with, adapt, and transform to the growing global challenge of antimicrobial resistance.
    Matched MeSH terms: Ecosystem
  12. Ang TK, Safuan HM, Sidhu HS, Jovanoski Z, Towers IN
    Bull Math Biol, 2019 07;81(7):2748-2767.
    PMID: 31201660 DOI: 10.1007/s11538-019-00627-8
    The present paper studies a predator-prey fishery model which incorporates the independent harvesting strategies and nonlinear impact of an anthropogenic toxicant. Both fish populations are harvested with different harvesting efforts, and the cases for the presence and non-presence of harvesting effort are discussed. The prey fish population is assumed to be infected by the toxicant directly which causes indirect infection to predator fish population through the feeding process. Each equilibrium of the proposed system is examined by analyzing the respective local stability properties. Dynamical behavior and bifurcations are studied with the assistance of threshold conditions influencing the persistence and extinction of both predator and prey. Bionomic equilibrium solutions for three possible cases are investigated with certain restrictions. Optimal harvesting policy is explored by utilizing the Pontryagin's Maximum Principle to optimize the profit while maintaining the sustainability of the marine ecosystem. Bifurcation analysis showed that the harvesting parameters are the key elements causing fishery extinction. Numerical simulations of bionomic and optimal equilibrium solutions showed that the presence of toxicant has a detrimental effect on the fish populations.
    Matched MeSH terms: Ecosystem
  13. Lupascu M, Varkkey H, Tortajada C
    Sci Total Environ, 2020 Jun 25;723:137988.
    PMID: 32392686 DOI: 10.1016/j.scitotenv.2020.137988
    Tropical peatland degradation due to oil palm plantation development has reduced peat's ability to naturally regulate floods. In turn, more severe and frequent flooding on peatlands could seriously impair plantation productivity. Understanding the roles of peatland ecosystems in regulating floods has become essential given the continued pressure on land resources, especially in Southeast Asia. However, the limited knowledge on this topic has resulted in the oversimplifications of the relationships between floods, commercial plantations and peatland sustainability, creating major disagreement among policymakers at different levels in governments, companies, NGOs and society. Hence, this study identifies whether flood policies are integrated within peatland management through a qualitative policy analysis of publicly available papers, government reports, and other official documents that discuss flooding, and/or more in general, hydrology in peatlands. Document analysis was then triangulated with data obtained from several semi-structured discussions. The analysis indicates that the industry on peatlands and the peatland's environmental sustainability could be threatened by increased flooding. We show that, in spite of this, flood policies in SE Asian countries like Malaysia and Indonesia have not been well-integrated into peatland management. We also discuss how the countries could move forward to overcome this problem.
    Matched MeSH terms: Ecosystem
  14. Jani J, Toor GS
    Water Res, 2018 06 15;137:344-354.
    PMID: 29571112 DOI: 10.1016/j.watres.2018.02.042
    Nitrogen (N) transport from land to water is a dominant contributor of N in estuarine waters leading to eutrophication, harmful algal blooms, and hypoxia. Our objectives were to (1) investigate the composition of inorganic and organic N forms, (2) distinguish the sources and biogeochemical mechanisms of nitrate-N (NO3-N) transport using stable isotopes of NO3- and Bayesian mixing model, and (3) determine the dissolved organic N (DON) bioavailability using bioassays in a longitudinal gradient from freshwater to estuarine ecosystem located in the Tampa Bay, Florida, United States. We found that DON was the most dominant N form (mean: 64%, range: 46-83%) followed by particulate organic N (PON, mean: 22%, range: 14-37%), whereas inorganic N forms (NOx-N: 7%, NH4-N: 7%) were 14% of total N in freshwater and estuarine waters. Stable isotope data of NO3- revealed that nitrification was the main contributor (36.4%), followed by soil and organic N sources (25.5%), NO3- fertilizers (22.4%), and NH4+ fertilizers (15.7%). Bioassays showed that 14 to 65% of DON concentrations decreased after 5-days of incubation indicating utilization of DON by microbes in freshwater and estuarine waters. These results suggest that despite low proportion of inorganic N forms, the higher concentrations and bioavailability of DON can be a potential source of N for algae and bacteria leading to water quality degradation in the estuarine waters.
    Matched MeSH terms: Ecosystem
  15. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Ecosystem
  16. Mashlawi AM, Jordan HR, Crippen LT, Tomberlin JK
    Trop Biomed, 2020 Dec 01;37(4):973-985.
    PMID: 33612750 DOI: 10.47665/tb.37.4.973
    Buruli ulcer (BU) is a globally recognized, yet largely neglected tropical disease whose etiologic agent is Mycobacterium ulcerans. Although the exact mode of transmission is unclear, epidemiological evidence links BU incidence with slow-moving or stagnant, aquatic habitats, and laboratory-based experiments have shown disease manifestation in animals with dermal punctures. Therefore, hypotheses for transmission include contact with slowmoving aquatic habitats and associated biting aquatic insects, such as mosquitoes. Recent research demonstrated the toxin produced by M. ulcerans, mycolactone, is an attractant for adult mosquitoes seeking a blood-meal as well as oviposition sites. In the study presented here, we examined the impact of mycolactone at different concentrations on immature lifehistory traits of Aedes aegypti, which commonly occurs in the same environment as M. ulcerans. We determined percent egg hatch was not significantly different across treatments. However, concentration impacted the survivorship of larval mosquitoes to the adult stage (p < 0.001). Resulting adults also showed a slight preference, but not significant (p > 0.05), for oviposition in habitats contaminated with mycolactone suggesting a legacy effect.
    Matched MeSH terms: Ecosystem*
  17. Madrid RS, Sychra O, Benedick S, Edwards DP, Efeykin BD, Fandrem M, et al.
    Int J Parasitol Parasites Wildl, 2020 Dec;13:231-247.
    PMID: 33294362 DOI: 10.1016/j.ijppaw.2020.10.011
    The tropical rainforests of Sundaland are a global biodiversity hotspot increasingly threatened by human activities. While parasitic insects are an important component of the ecosystem, their diversity and parasite-host relations are poorly understood in the tropics. We investigated parasites of passerine birds, the chewing lice of the speciose genus MyrsideaWaterston, 1915 (Phthiraptera: Menoponidae) in a natural rainforest community of Malaysian Borneo. Based on morphology, we registered 10 species of lice from 14 bird species of six different host families. This indicated a high degree of host specificity and that the complexity of the system could be underestimated with the potential for cryptic lineages/species to be present. We tested the species boundaries by combining morphological, genetic and host speciation diversity. The phylogenetic relationships of lice were investigated by analyzing the partial mitochondrial cytochrome oxidase I (COI) and the nuclear elongation factor alpha (EF-1α) genes sequences of the species. This revealed a monophyletic group of Myrsidea lineages from seven hosts of the avian family Pycnonotidae, one host of Timaliidae and one host of Pellorneidae. However, species delimitation methods supported the species boundaries hypothesized by morphological studies and confirmed that four species of Myrsidea are not single host specific. Cophylogenetic analysis by both distance-based test ParaFit and event-based method Jane confirmed overall congruence between the phylogenies of Myrsidea and their hosts. In total we recorded three cospeciation events for 14 host-parasite associations. However only one host-parasite link (M. carmenae and their hosts Terpsiphone affinis and Hypothymis azurea) was significant after the multiple testing correction in ParaFit. Four new species are described: Myrsidea carmenaesp.n. ex Hypothymis azurea and Terpsiphone affinis, Myrsidea franciscaesp.n. ex Rhipidura javanica, Myrsidea ramonisp.n. ex Copsychus malabaricus stricklandii, and Myrsidea victoriaesp.n. ex. Turdinus sepiarius.
    Matched MeSH terms: Ecosystem
  18. Neo ML, Erftemeijer PL, van Beek JK, van Maren DS, Teo SL, Todd PA
    PLoS One, 2013;8(3):e58819.
    PMID: 23555597 DOI: 10.1371/journal.pone.0058819
    Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1-68.6 settled individuals per 10,000 m(2)). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.
    Matched MeSH terms: Ecosystem
  19. Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, et al.
    Mar Pollut Bull, 2018 Oct;135:654-681.
    PMID: 30301085 DOI: 10.1016/j.marpolbul.2018.07.041
    Given predicted increases in urbanization in tropical and subtropical regions, understanding the processes shaping urban coral reefs may be essential for anticipating future conservation challenges. We used a case study approach to identify unifying patterns of urban coral reefs and clarify the effects of urbanization on hard coral assemblages. Data were compiled from 11 cities throughout East and Southeast Asia, with particular focus on Singapore, Jakarta, Hong Kong, and Naha (Okinawa). Our review highlights several key characteristics of urban coral reefs, including "reef compression" (a decline in bathymetric range with increasing turbidity and decreasing water clarity over time and relative to shore), dominance by domed coral growth forms and low reef complexity, variable city-specific inshore-offshore gradients, early declines in coral cover with recent fluctuating periods of acute impacts and rapid recovery, and colonization of urban infrastructure by hard corals. We present hypotheses for urban reef community dynamics and discuss potential of ecological engineering for corals in urban areas.
    Matched MeSH terms: Ecosystem
  20. Luskin MS, Albert WR, Tobler MW
    Nat Commun, 2017 12 05;8(1):1783.
    PMID: 29208916 DOI: 10.1038/s41467-017-01656-4
    The continuing development of improved capture-recapture (CR) modeling techniques used to study apex predators has also limited robust temporal and cross-site analyses due to different methods employed. We develop an approach to standardize older non-spatial CR and newer spatial CR density estimates and examine trends for critically endangered Sumatran tigers (Panthera tigris sumatrae) using a meta-regression of 17 existing densities and new estimates from our own fieldwork. We find that tiger densities were 47% higher in primary versus degraded forests and, unexpectedly, increased 4.9% per yr from 1996 to 2014, likely indicating a recovery from earlier poaching. However, while tiger numbers may have temporarily risen, the total potential island-wide population declined by 16.6% from 2000 to 2012 due to forest loss and degradation and subpopulations are significantly more fragmented. Thus, despite increasing densities in smaller parks, we conclude that there are only two robust populations left with >30 breeding females, indicating Sumatran tigers still face a high risk of extinction unless deforestation can be controlled.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links