RESULTS: The dengue fever mouse model was established by intraperitoneal inoculation of dengue virus, New Guinea C strain at 2 × 106 PFU. Daily oral administration of 1000 mg/kg freeze-dried C. papaya leaf juice (FCPLJ) was done starting from day 1 to day 3 post infection. The RNA was extracted from liver tissues harvested on day 4 post infection. The expression levels of 84 genes related to mouse endothelial cell biology were determined by qRT-PCR technique. Dengue virus infection upregulated 15 genes and downregulated two genes in the liver of AG129 mice. The FCPLJ treatment upregulated monocyte chemoattractant protein 1 and downregulated intercellular adhesion molecule 1, integrin beta 3 and fibronectin 1 genes during dengue virus infection. The data showed the potential effect of FCPLJ treatment on the expression profile of endothelial cell biology related genes in the liver of dengue virus infected-AG129 mice. Further proteomic studies are needed to determine the functional roles of the genes affected by FCPLJ treatment.
METHODS: Data from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.
RESULTS: By bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.
CONCLUSIONS: ETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.
MATERIAL AND METHODS: Using an Oragene® RNA kit, the total RNA was purified from the saliva of 10 patients with chronic periodontitis and 10 patients without chronic periodontitis. The quantity and quality of the total RNA was determined, and a measure of gene expression via cDNA was undertaken using the Affymetrix microarray system. The microarray profiling result was further validated by real-time quantitative polymerase chain reaction.
RESULTS: Spectrophotometric analysis showed the total RNA purified from each participant ranged from 0.92 μg/500 μL to 62.85 μg/500 μL. There was great variability in the quantity of total RNA obtained from the 2 groups in the study with a mean of 10.21 ± 12.71 μg/500 μL for the periodontitis group and 15.97 ± 23.47 μg/500 μL for the control group. Further the RNA purity (based on the A260 /A280 ratio) for the majority of participants (9 periodontitis and 6 controls) were within the acceptable limits for downstream analysis (2.0 ± 0.1). The study samples, showed 2 distinct bands at 23S (3800 bp) and 16S (1500 bp) characteristic of bacterial rRNA. Preliminary microarray analysis was performed for 4 samples (P2, P6, H5 and H9). The percentage of genes present in each of the 4 samples was not consistent with about 1.8%-18.7% of genes being detected. Quantitative real-time polymerase chain reaction confirmed that the total RNA purified from each sample was mainly bacterial RNA (Uni 16S) with minimal human mRNA.
CONCLUSION: This study showed that minimal amounts of human RNA were able to be isolated from the saliva of patients with periodontitis as well as controls. Further work is required to enhance the extraction process of human mRNA from saliva if the salivary transcriptome is to be used in determining individual patient susceptibility.
FINDINGS: We optimized the assembly of a Hevea bark transcriptome based on 16 Gb Illumina PE RNA-Seq reads using the Oases assembler across a range of k-mer sizes. We then assessed assembly quality based on transcript N50 length and transcript mapping statistics in relation to (a) known Hevea cDNAs with complete open reading frames, (b) a set of core eukaryotic genes and (c) Hevea genome scaffolds. This was followed by a systematic transcript mapping process where sub-assemblies from a series of incremental amounts of bark transcripts were aligned to transcripts from the entire bark transcriptome assembly. The exercise served to relate read amounts to the degree of transcript mapping level, the latter being an indicator of the coverage of gene transcripts expressed in the sample. As read amounts or datasize increased toward 16 Gb, the number of transcripts mapped to the entire bark assembly approached saturation. A colour matrix was subsequently generated to illustrate sequencing depth requirement in relation to the degree of coverage of total sample transcripts.
CONCLUSIONS: We devised a procedure, the "transcript mapping saturation test", to estimate the amount of RNA-Seq reads needed for deep coverage of transcriptomes. For Hevea de novo assembly, we propose generating between 5-8 Gb reads, whereby around 90% transcript coverage could be achieved with optimized k-mers and transcript N50 length. The principle behind this methodology may also be applied to other non-model plants, or with reads from other second generation sequencing platforms.