Displaying publications 141 - 160 of 970 in total

Abstract:
Sort:
  1. Billen J, Bauweleers E, Hashim R, Ito F
    Arthropod Struct Dev, 2013 May;42(3):173-83.
    PMID: 23333930 DOI: 10.1016/j.asd.2013.01.001
    We studied the exocrine system of both workers and ergatoid queens of Protanilla wallacei using light, scanning and transmission electron microscopy. Our survey revealed the presence of 26 glands, of which 6 had never been found before in ants. Five of these represent novel discoveries for social insects in general. The overall novel discoveries comprise an epithelial stipes gland, a pharyngeal wall gland, a central petiole gland, a lateral postpetiole gland and a foot-sole gland in the hindleg pretarsi. The intramandibular epithelial gland was already reported in some bees previously, but is now for the first time also reported in ants. The exocrine system of workers and ergatoid queens is very similar, with only the spermathecal gland showing an obvious difference. This is in line with the limited anatomical as well as behavioural difference between both castes in Protanilla compared to the situation in Leptanilla.
    Matched MeSH terms: Ants/anatomy & histology*; Exocrine Glands/anatomy & histology
  2. Dow RA, Ngiam RW
    Zootaxa, 2013;3670:87-90.
    PMID: 26438925
    Prodasineura yulan is described from a male from Maludam National Park, Betong Division, Sarawak, Malaysian Borneo. It is allied to Prodasineura interrupta.
    Matched MeSH terms: Animal Structures/anatomy & histology; Odonata/anatomy & histology
  3. Schilthuizen M, Davison A
    Naturwissenschaften, 2005 Nov;92(11):504-15.
    PMID: 16217668
    The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left-right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the 'wrong' side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called 'single-gene' speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when reproductive character displacement is involved. Understanding the establishment of chirality, the preponderance of dextral species and the rare instances of stable dimorphism is an important target for future research. Since the genetics of chirality have been studied in only a few pulmonate species, we also urge that more taxa, especially those from the sea, should be investigated.
    Matched MeSH terms: Animal Structures/anatomy & histology*; Snails/anatomy & histology*
  4. Schilthuizen M, Scott BJ, Cabanban AS, Craze PG
    Heredity (Edinb), 2005 Sep;95(3):216-20.
    PMID: 16077741
    Tree snails of the subgenus Amphidromus s. str. are unusual because of the chiral dimorphism that exists in many species, with clockwise (dextrally) and counter-clockwise (sinistrally) coiled individuals co-occurring in the same population. Given that mating in snails is normally impeded when the two partners have opposite coil, positive frequency-dependent selection should prevent such dimorphism from persisting. We test the hypothesis that a strong population structure with little movement between tree-based demes may result in the fixation of coiling morphs at a very small spatial scale, but apparent dimorphism at all larger scales. To do so, we describe the spatial structure in a Malaysian population of A. inversus (Müller, 1774) with 36% dextrals. We marked almost 700 juvenile and adult snails in a piece of forest consisting of 92 separate trees, and recorded dispersal and the proportions of dextrals and sinistrals in all trees over a 7-day period. We observed frequent movement between trees (155 events), and found that no trees had snail populations with proportions of dextrals and sinistrals that were significantly different from random. Upon recapture 1 year later, almost two-thirds of the snails had moved away from their original tree. We conclude that population structure alone cannot stabilise the coil dimorphism in Amphidromus.
    Matched MeSH terms: Animal Structures/anatomy & histology*; Snails/anatomy & histology*
  5. Dharap AS, Tanuseputro H
    Anthropol Anz, 1997 Mar;55(1):63-8.
    PMID: 9161682
    The interalar width of the nose and the intercanine distance were measured in 266 Malay subjects (111 males and 155 females) randomly selected from the students of the School of Medical Sciences. University Sains Malaysia in Kota Bharu, Malaysia. The mean interalar width of the nose in male subjects was 39.8 +/- 2.3 mm (range 34-45 mm) and in female subjects 36.2 mm +/- 2.2 mm (range 30-41 mm). There is a statistically significant difference (t = 12.9: p < 0.05) in the nasal width between male and female Malay subjects. This agrees with the findings of other similar studies that males have wider noses than females. The mean maxillary intercanine distance in male subjects was 36.7 = 2.6 mm (range 30-42 mm) and in female subjects 36.2 = 2.3 mm (range 30-42 mm). The anterior maxillary arch is significantly wider in Malay subjects compared to Chinese from Singapore (Keng 1986) as p < 0.05 and to Caucasians (Sawiris 1977) as p < 0.05. There is a significant correlation (r = 0.312; p < 0.05) between the nasal width and the intercanine distance in female subjects but not in male subjects.
    Matched MeSH terms: Cuspid/anatomy & histology*; Nose/anatomy & histology*
  6. Neo J
    Anesth Prog, 1989 Nov-Dec;36(6):276-8.
    PMID: 2490061
    The position of the mental foramen of the local Malays and Indians in Singapore was determined from a series of orthopantomograms. The most frequent location does not conform to the position cited in many anatomy, surgery, and dental anesthesia texts as being below and between the apices of the lower premolars. This data has implications in the teaching and practice of dental anesthesia. In both these races, the median location is just below the second premolar.
    Matched MeSH terms: Mandible/anatomy & histology*; Mandibular Nerve/anatomy & histology*
  7. Kamin S
    Singapore Dent J, 1989 Dec;14(1):13-5.
    PMID: 2487468
    An important relationship should exist between the periodontist and restorative dentist. Periodontics and restorative dentistry should not be divisible and all forms of restorations, from a simple filling to a complex precision-retained bridge, should be performed with the health and biology of the periodontium in mind. A very crucial concept which should be borne in the mind of every restorative dentist is the concept of biologic width.
    Matched MeSH terms: Epithelial Attachment/anatomy & histology*; Periodontium/anatomy & histology*
  8. Meon R, Woon KC
    Med J Malaysia, 1982 Dec;37(4):306-7.
    PMID: 7167080
    Incidence, aetiology, morphology, histology and symptoms of natal or neonatal teeth are presented. The commonly used terminology natal and neonatal teeth is adopted in this article. A case of an 8-week old girl with natal tooth and sublingual ulceration of the tip of the tongue is described.
    Matched MeSH terms: Natal Teeth/anatomy & histology*; Tooth, Deciduous/anatomy & histology*
  9. Kamiya M, Ooi HK, Ohbayashi M, Ow-Yang CK
    Jpn. J. Vet. Res., 1987 Oct;35(4):275-82.
    PMID: 3430908
    Matched MeSH terms: Cysticercus/anatomy & histology*; Taenia/anatomy & histology*
  10. Ngeow WC, Yuzawati Y
    J Oral Sci, 2003 Sep;45(3):171-5.
    PMID: 14650583
    Knowledge of the position of the mental foramen is important both when administering regional anesthesia and performing periapical surgery in the mental region of the mandible. This study determines the position of the mental foramen in a selected Malay population. One hundred and sixty nine panoramic radiographs of Malay patients retrieved from a minor oral surgery waiting list were selected to identify the normal range for the position of the mental foramen. The foramen was not included in the study if there was any mandibular tooth missing between the lower left and right first molars (36-46). The findings indicated the most common position for the mental foramen was in line with the longitudinal axis of the second premolar (69.2%) followed by a location between the first and second premolar (19.6%). The right and left foramina were bilaterally symmetrical in three of six recorded positions in 67.7% patients. The mental foramen was most often in line with the second premolar.
    Matched MeSH terms: Chin/anatomy & histology*; Mandible/anatomy & histology*
  11. Nadchatram M, Traub R
    J Med Entomol, 1971 Dec 15;8(5):562-97.
    PMID: 5160263
    Matched MeSH terms: Larva/anatomy & histology; Mites/anatomy & histology
  12. Clements R, Liew TS, Vermeulen JJ, Schilthuizen M
    Biol Lett, 2008 Apr 23;4(2):179-82.
    PMID: 18182365 DOI: 10.1098/rsbl.2007.0602
    The manner in which a gastropod shell coils has long intrigued laypersons and scientists alike. In evolutionary biology, gastropod shells are among the best-studied palaeontological and neontological objects. A gastropod shell generally exhibits logarithmic spiral growth, right-handedness and coils tightly around a single axis. Atypical shell-coiling patterns (e.g. sinistroid growth, uncoiled whorls and multiple coiling axes), however, continue to be uncovered in nature. Here, we report another coiling strategy that is not only puzzling from an evolutionary perspective, but also hitherto unknown among shelled gastropods. The terrestrial gastropod Opisthostoma vermiculum sp. nov. generates a shell with: (i) four discernable coiling axes, (ii) body whorls that thrice detach and twice reattach to preceding whorls without any reference support, and (iii) detached whorls that coil around three secondary axes in addition to their primary teleoconch axis. As the coiling strategies of individuals were found to be generally consistent throughout, this species appears to possess an unorthodox but rigorously defined set of developmental instructions. Although the evolutionary origins of O. vermiculum and its shell's functional significance can be elucidated only once fossil intermediates and live individuals are found, its bewildering morphology suggests that we still lack an understanding of relationships between form and function in certain taxonomic groups.
    Matched MeSH terms: Animal Structures/anatomy & histology*; Gastropoda/anatomy & histology*
  13. Endo H, Fukuta K, Kimura J, Sasaki M, Stafford BJ
    J Vet Med Sci, 2004 Oct;66(10):1229-35.
    PMID: 15528854
    We examined the geographical variation of the skull size and shape of the lesser mouse deer (Tragulus javanicus) from Laos, Thailand, Peninsular Malaysia, Sumatra, Java, Borneo, Langkawi and some Islands of Tenasserim in Myanmar. Although the influence of the climatic condition on skull size was not confirmed in the mainland populations, the skull became rostro-caudally longer in the populations of Tenasserim and Sumatra because of island isolation effect. The skull size was classified into the following three clusters of localities from the matrix of Q-mode correlation coefficients: 1) Langkawi and Tenasserim, 2) Laos and Thailand, 3) Sumatra and Borneo. The skulls in the population of Java belong to the cluster of Langkawi and Tenasserim in male, however were morphologically similar to those in the cluster of Borneo and Sumatra. The canonical discriminant analysis pointed out that the Laos and Tenasserim populations were separated from the other ones and that the populations of Sumatra, Java and Borneo were intermingled each other.
    Matched MeSH terms: Deer/anatomy & histology*; Skull/anatomy & histology*
  14. Hayashida A, Endo H, Sasaki M, Oshida T, Kimura J, Waengsothorn S, et al.
    J Vet Med Sci, 2007 Feb;69(2):149-57.
    PMID: 17339759
    The geographical variation of the gray-bellied squirrel (Callosciurus caniceps) was examined using osteometry of skull in Southeast Asia. From the principal component analysis (PCA), the plots of the northern localities from Nan to Kanchanaburi and those of the southern localities from Narathiwat to Kuala Lumpur in male were completely separated. In female, the plots of the locality from Uttradit to Kanchanaburi and those of the locality from Pattani to Negri Sembilan were completely separated. We called these northern localities and southern localities which are distinguished by the PCA as N group and S group. The size and shape of the skulls of these squirrels indicated the differences between N group and S group from t-test and U-test. These results may be influenced by the two transitions of the phytogeography around the southernmost locality in N group and the northernmost locality in S group in the peninsular Thailand and Malay Peninsula. Localities which are located between N and S groups were called the Middle (M) group. From the PCA among N, S groups and each locality of M group, the plots of localities such as Prachuap Khiri Khan, Chumphon, Krabi, Nakhon Si Thammarat and Trang in both sexes of M group could not be separated from those of N and S groups. We suggest that the sympatric distribution of N and S groups and the hybrid of N and S populations may be seen in these localities of M group.
    Matched MeSH terms: Sciuridae/anatomy & histology*; Skull/anatomy & histology*
  15. Chin L, Moran JA, Clarke C
    New Phytol, 2010 Apr;186(2):461-70.
    PMID: 20100203 DOI: 10.1111/j.1469-8137.2009.03166.x
    *Three Bornean pitcher plant species, Nepenthes lowii, N. rajah and N. macrophylla, produce modified pitchers that 'capture' tree shrew faeces for nutritional benefit. Tree shrews (Tupaia montana) feed on exudates produced by glands on the inner surfaces of the pitcher lids and defecate into the pitchers. *Here, we tested the hypothesis that pitcher geometry in these species is related to tree shrew body size by comparing the pitcher characteristics with those of five other 'typical' (arthropod-trapping) Nepenthes species. *We found that only pitchers with large orifices and lids that are concave, elongated and oriented approximately at right angles to the orifice capture faeces. The distance from the tree shrews' food source (that is, the lid nectar glands) to the front of the pitcher orifice precisely matches the head plus body length of T. montana in the faeces-trapping species, and is a function of orifice size and the angle of lid reflexion. *Substantial changes to nutrient acquisition strategies in carnivorous plants may occur through simple modifications to trap geometry. This extraordinary plant-animal interaction adds to a growing body of evidence that Nepenthes represents a candidate model for adaptive radiation with regard to nitrogen sequestration strategies.
    Matched MeSH terms: Tupaiidae/anatomy & histology*; Sarraceniaceae/anatomy & histology*
  16. Moore BC, Fitri WN, Augustine L
    Anat Histol Embryol, 2020 May;49(3):390-401.
    PMID: 32154618 DOI: 10.1111/ahe.12542
    As wild population threats for the endangered false gharial (Tomistoma schlegelii) persist, conservation breeding programs, including developing semen collection techniques for subsequent artificial insemination, are becoming important species conservation measures. Developing reproductive biology understanding of a species is important to developing best practices and hopefully maximizing reproductive successes. However, information on crocodylians functional copulatory anatomy in general is lacking. To that end, zoological facilities and conservation centres have the exceptional opportunity to contribute new understandings that may not otherwise be attainable regarding crocodylian reproductive anatomy, particularly during routine physical examinations or post-mortem necropsies. Therefore, to better understand T. schlegelii reproductive biology, to contribute knowledge in support of zoo breeding conservation efforts and to contribute to what is known overall about crocodylian reproduction, we investigated phallic anatomy of adult male Tomistoma from two zoological populations, the St. Louis Zoo, USA and Sungai Dusun Wildlife Reserve, Peninsular Malaysia. Here, we present the gross anatomical features and histological analysis of underlying tissue-level details in pursuit of a better understanding of copulatory function and associated gamete transfer mechanisms. While much of the overall Tomistoma phallic morphology and inferred function corresponds to that of other crocodylian species and speaks to conserved aspects of functional anatomy across taxa, species-specific aspects of glans and glans tip morphology are also identified. These novelties are discussed in a general function and overall broader evolutionary contexts.
    Matched MeSH terms: Alligators and Crocodiles/anatomy & histology*; Genitalia, Male/anatomy & histology*
  17. Tsuboi M, Lim AC, Ooi BL, Yip MY, Chong VC, Ahnesjö I, et al.
    J Evol Biol, 2017 Jan;30(1):150-160.
    PMID: 27748990 DOI: 10.1111/jeb.12995
    Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger.
    Matched MeSH terms: Brain/anatomy & histology*; Smegmamorpha/anatomy & histology*
  18. Kamimura Y, Yang CS, Lee CY
    J Evol Biol, 2019 08;32(8):844-855.
    PMID: 31081978 DOI: 10.1111/jeb.13486
    The evolution of laterality, that is the biased use of laterally paired, morphologically symmetrical organs, has attracted the interest of researchers from a variety of disciplines. It is, however, difficult to quantify the fitness benefits of laterality because many organs, such as human hands, possess multimodal functions. Males of the earwig Labidura riparia (Insecta: Dermaptera: Labiduridae) have morphologically similar laterally paired penises, only one of which is used for inseminating the female during a single copulation bout, and thus provide a rare opportunity to address how selection pressure may shape the evolution of population-level laterality. Our population studies revealed that in 10 populations, located at 2.23-43.3° north, the right penis is predominantly used for copulating (88.6%). A damaged penis was found in 23% of rare left-handers, suggesting that the left penis can function as a spare when the right one is damaged. By pairing L. riparia females with surgically manipulated males, we found that males forced to use the right penis outperformed left-handed males in copulation (the probability of establishing genital coupling during the 1-hr observation period: odds ratio [OR] of 3.50) and insemination (probability of transferring a detectable amount of sperm: OR of 2.94). This right-handed advantage may be due to the coiled morphology of the sperm storage organ with a right-facing opening. Thus, female genital morphology may play a significant role in the evolution of handedness and may have acted as a driving force to reduce penis number in related taxa.
    Matched MeSH terms: Insects/anatomy & histology*; Penis/anatomy & histology*
  19. Kojima Y, Fukuyama I, Kurita T, Hossman MYB, Nishikawa K
    Sci Rep, 2020 07 29;10(1):12670.
    PMID: 32728121 DOI: 10.1038/s41598-020-69436-7
    The jaws of vertebrates display a striking diversity in form and function, but they typically open and close like a trapdoor rather than sliding like a saw. Here, we report unique feeding behaviour in the blunt-headed snail-eating snake, Aplopeltura boa (family Pareidae), where the snake cuts off and circumvents the indigestible part (the operculum) of its prey in the mouth using long sliding excursions of one side of the mandible, while the upper jaws and the mandible on the other side maintain a stable grasp on the prey. This behaviour, which we call 'mandibular sawing', is made possible by extraordinarily independent movements of the jaw elements and is a surprising departure from usual feeding behaviour in vertebrates.
    Matched MeSH terms: Mandible/anatomy & histology*; Colubridae/anatomy & histology
  20. Khang TF, Mohd Puaad NAD, Teh SH, Mohamed Z
    J Forensic Sci, 2021 May;66(3):960-970.
    PMID: 33438785 DOI: 10.1111/1556-4029.14655
    Wing shape variation has been shown to be useful for delineating forensically important fly species in two Diptera families: Calliphoridae and Sarcophagidae. Compared to DNA-based identification, the cost of geometric morphometric data acquisition and analysis is relatively much lower because the tools required are basic, and stable softwares are available. However, to date, an explicit demonstration of using wing geometric morphometric data for species identity prediction in these two families remains lacking. Here, geometric morphometric data from 19 homologous landmarks on the left wing of males from seven species of Calliphoridae (n = 55), and eight species of Sarcophagidae (n = 40) were obtained and processed using Generalized Procrustes Analysis. Allometric effect was removed by regressing centroid size (in log10 ) against the Procrustes coordinates. Subsequently, principal component analysis of the allometry-adjusted Procrustes variables was done, with the first 15 principal components used to train a random forests model for species prediction. Using a real test sample consisting of 33 male fly specimens collected around a human corpse at a crime scene, the estimated percentage of concordance between species identities predicted using the random forests model and those inferred using DNA-based identification was about 80.6% (approximate 95% confidence interval = [68.9%, 92.2%]). In contrast, baseline concordance using naive majority class prediction was 36.4%. The results provide proof of concept that geometric morphometric data has good potential to complement morphological and DNA-based identification of blow flies and flesh flies in forensic work.
    Matched MeSH terms: Wings, Animal/anatomy & histology*; Sarcophagidae/anatomy & histology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links