Displaying publications 141 - 154 of 154 in total

Abstract:
Sort:
  1. Baghdadi A, Halim RA, Ghasemzadeh A, Ramlan MF, Sakimin SZ
    PeerJ, 2018;6:e5280.
    PMID: 30386686 DOI: 10.7717/peerj.5280
    Background: Corn silage is an important feed for intense ruminant production, but the growth of corn relies heavily on the use of chemical fertilizers. Sustainable crop production requires careful management of all nutrient sources available on a farm, particularly in corn-based cropping systems.

    Methods: Experiments were conducted to determine the appropriate technique of corn-legume intercropping in conjunction with the supplemental use of chemical fertilizers, organic manure, and biofertilizers (BFs). Acetylene reduction assays (ARAs) were also performed on corn and soybean roots.

    Results: Combining chemical fertilizers with chicken manure (CM) in a 50:50 ratio and applying 50% NPK+50% CM+BF produced fresh forage and dry matter (DM) yields that were similar to those produced in the 100% nitrogen (N), phosphorus (P), potassium (K) treatment. Among the lone fertilizer treatments, the inorganic fertilizer (100% NPK) treatment produced the highest DM yield (13.86 t/ha) of forage and outyielded the 100% CM (9.74 t/ha) treatment. However, when CM was combined with NPK, the resulting DM yield of forage (13.86 t/ha) was the same as that resulting from 100% NPK (13.68 t/ha). Compared with CM applications alone, combinations of NPK and CM applications resulted in increased plant height, crop growth rates (CGRs) and leaf area index (LAI), but the values of these parameters were similar to those resulting from 100% NPK application. Fertilizers in which the ratio was 50% CM+50% NPK or 50% CM+50% NPK+BF resulted in protein yields that were similar to those resulting from conventional fertilizers. Similarly, the CP content did not significantly differ between applications of the 100% NPK and 50% CM+50% NPK fertilizers. The use of BFs had no significant impact on improving either the yield or quality of forage fertilized with inorganic or organic fertilizer. Lactic acid responded differently to different fertilizer applications and was significantly higher in the fertilized plots than in the unfertilized plots. Compared with treatments of lone chemical and lone organic manure fertilizers, treatments involving applications of BF and a combination of BF and NPK or CM resulted in higher ARA values.

    Discussion: There is no simple and easy approach to increase biological nitrogen fixation (BNF) in grain legumes grown as part of a cropping system under realistic farm field conditions. Overall, evidence recorded from this study proves that, compared with corn monocrops combined with CM and chemical fertilizers, corn-soybean intercrops could increase forage yields and quality, produce higher total protein yields, and reduce the need for protein supplements and chemical fertilizers.

    Matched MeSH terms: Lactic Acid
  2. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M
    Pharmaceutics, 2020 Apr 24;12(4).
    PMID: 32344768 DOI: 10.3390/pharmaceutics12040392
    The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
    Matched MeSH terms: Lactic Acid
  3. Md Noor J, Hawari R, Mokhtar MF, Yussof SJ, Chew N, Norzan NA, et al.
    Int J Emerg Med, 2020 Feb 07;13(1):6.
    PMID: 32028888 DOI: 10.1186/s12245-020-0264-5
    INTRODUCTION: Methanol poisoning usually occurs in a cluster and initial diagnosis can be challenging. Mortality is high without immediate interventions. This paper describes a methanol poisoning outbreak and difficulties in managing a large number of patients with limited resources.

    METHODOLOGY: A retrospective analysis of a methanol poisoning outbreak in September 2018 was performed, describing patients who presented to a major tertiary referral centre.

    RESULT: A total of 31 patients were received over the period of 9 days. Thirty of them were males with a mean age of 32 years old. They were mostly foreigners. From the 31 patients, 19.3% were dead on arrival, 3.2% died in the emergency department and 38.7% survived and discharged. The overall mortality rate was 61.3%. Out of the 12 patients who survived, two patients had toxic optic neuropathy, and one patient had uveitis. The rest of the survivors did not have any long-term complications. Osmolar gap and lactate had strong correlations with patient's mortality. Serum pH, bicarbonate, lactate, potassium, anion gap, osmolar gap and measured serum osmolarity between the alive and dead patients were significant. Post-mortem findings of the brain were unremarkable.

    CONCLUSION: The mortality rate was higher, and the morbidity includes permanent visual impairment and severe neurological sequelae. Language barrier, severity of illness, late presentation, unavailability of intravenous ethanol and fomipezole and delayed dialysis may have been the contributing factors. Patient was managed based on clinical presentation. Laboratory parameters showed difference in median between group that survived and succumbed for pH, serum bicarbonate, lactate, potassium and osmolar and anion gap. Management of methanol toxicity outbreak in resource-limited area will benefit from a well-designed guideline that is adaptable to the locality.

    Matched MeSH terms: Lactic Acid
  4. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh Kumar S, et al.
    Biomaterials, 2014 May;35(14):4278-87.
    PMID: 24565521 DOI: 10.1016/j.biomaterials.2014.02.004
    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.
    Matched MeSH terms: Lactic Acid/pharmacology*
  5. Katouah H, Chen A, Othman I, Gieseg SP
    Int J Biochem Cell Biol, 2015 Oct;67:34-42.
    PMID: 26255116 DOI: 10.1016/j.biocel.2015.08.001
    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death.
    Matched MeSH terms: Lactic Acid/metabolism
  6. Nna VU, Abu Bakar AB, Ahmad A, Mohamed M
    Arch Physiol Biochem, 2021 Feb;127(1):51-60.
    PMID: 31072137 DOI: 10.1080/13813455.2019.1610778
    CONTEXT: Lactate is the preferred energy substrate for developing testicular germ cells. Diabetes is associated with impaired testicular lactate transport/utilisation, and poor sexual behaviour.

    OBJECTIVE: To examine the effects of metformin on parameters involved in testicular lactate production, transport/utilisation, and sexual behaviour in diabetic state.

    METHODS: Male Sprague-Dawley rats were assigned into normal control (NC), diabetic control (DC), and metformin-treated diabetic group (n = 6/group). Metformin (300 mg/kg b.w./day) was administrated orally for 4 weeks.

    RESULTS: Intra-testicular glucose and lactate levels, and lactate dehydrogenase (LDH) activity increased, while the mRNA transcript levels of genes responsible for testicular glucose and lactate transport/utilisation (glucose transporter 3, monocarboxylate transporter 4 (MCT4), MCT2, and LDH type C) decreased in DC group. Furthermore, penile nitric oxide increased, while cyclic guanosine monophosphate decreased, with impaired sexual behaviour in DC group. Treatment with metformin improved these parameters.

    CONCLUSIONS: Metformin increases testicular lactate transport/utilisation and improves sexual behaviour in diabetic state.

    Matched MeSH terms: Lactic Acid/metabolism*
  7. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE
    Biomed Pharmacother, 2018 Oct;106:1461-1468.
    PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102
    In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
    Matched MeSH terms: Lactic Acid/chemistry*
  8. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N
    J Biomater Sci Polym Ed, 2017 Nov;28(16):1966-1983.
    PMID: 28777694 DOI: 10.1080/09205063.2017.1364100
    The development of patient-friendly alternatives to bone-graft procedures is the driving force for new frontiers in bone tissue engineering. Poly (dl-lactic-co-glycolic acid) (PLGA) and chitosan are well-studied and easy-to-process polymers from which scaffolds can be fabricated. In this study, a novel dual-application scaffold system was formulated from porous PLGA and protein-loaded PLGA/chitosan microspheres. Physicochemical and in vitro protein release attributes were established. The therapeutic relevance, cytocompatibility with primary human mesenchymal stem cells (hMSCs) and osteogenic properties were tested. There was a significant reduction in burst release from the composite PLGA/chitosan microspheres compared with PLGA alone. Scaffolds sintered from porous microspheres at 37 °C were significantly stronger than the PLGA control, with compressive strengths of 0.846 ± 0.272 MPa and 0.406 ± 0.265 MPa, respectively (p 
    Matched MeSH terms: Lactic Acid/chemistry*
  9. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

    Matched MeSH terms: Lactic Acid/chemistry
  10. Suhaida MG, Yahya IB, Darmawati MY
    Med J Malaysia, 2004 May;59 Suppl B:63-4.
    PMID: 15468820
    The aim of this study was to investigate the effect of the surfactant properties of polyvinyl alcohol (PVA) in enhancing the yield of small size microspheres. Naltrexone microspheres were prepared by solvent-solvent extraction evaporation process. PVA of various concentrations were added into the aqueous phase prior to the mixing process. The addition of PVA was expected to influence the shape, size distribution, drug loading and drug release profile. The results indicated that it is desirable to increase the weight fraction of the microspheres with size range below 106 mm for the highest possible yield.
    Matched MeSH terms: Lactic Acid
  11. Lin X, Liu X, Xu J, Cheng KK, Cao J, Liu T, et al.
    Chin Med, 2019;14:18.
    PMID: 31080495 DOI: 10.1186/s13020-019-0240-2
    Background: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, which is commonly treated with antidiarrhoeal, antispasmodics, serotonergic agents or laxative agents. These treatments provide relief for IBS symptoms but may also lead to undesired side effects. Previously, herb-partitioned moxibustion (HPM) treatment has been demonstrated to be effective in ameliorating symptoms of IBS. However, the underlying mechanism of this beneficial treatment is yet to be established. The aim of the current study was to systematically assess the metabolic alterations in response to diarrhea-predominant IBS (IBS-D) and therapeutic effect of HPM.

    Methods: Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics approach was used to investigate fecal and serum metabolome of rat model of IBS-D with and without HPM treatment.

    Results: The current results showed that IBS-induced metabolic alterations in fecal and serum sample include higher level of threonine and UDP-glucose together with lower levels of aspartate, ornithine, leucine, isoleucine, proline, 2-hydroxy butyrate, valine, lactate, ethanol, arginine, 2-oxoisovalerate and bile acids. These altered metabolites potentially involve in impaired gut secretory immune system and intestinal inflammation, malabsorption of nutrients, and disordered metabolism of bile acids. Notably, the HPM treatment was found able to normalize the Bristol stool forms scale scores, fecal water content, plasma endotoxin level, and a number of IBS-induced metabolic changes.

    Conclusions: These findings may provide useful insight into the molecular basis of IBS and mechanism of the HPM intervention.

    Matched MeSH terms: Lactic Acid
  12. Perumal, V., Khoo, W.C., Abdul-Hamid, A., Ismail, A., Saari, K., Murugesu, S., et al.
    MyJurnal
    Momordica charantia, also known as bitter melon or ‘peria katak’ in Malaysia, is a member of the family Cucurbitaceae. Bitter melon is an excellent source of vitamins and minerals that made it extensively nutritious. Moreover, the seed, fruit and leave of the plant contain bioactive compounds with a wide range of biological activities that have been used in traditional medicines in the treatment of several diseases, including inflammation, infections, obesity and diabetes. The aim of this study was to evaluate changes in urinary metabolite profile of the normal, streptozotocin-induced type 1 diabetes and M. charantia treated diabetic rats using proton nuclear magnetic resonance (1H-NMR) -based metabolomics profiling. Study had been carried out by inducing diabetes in the rats through injection of streptozotocin, which exhibited type 1 diabetes. M. charantia extract (100 and 200 mg/kg body weight) was administrated to the streptozotocin-induced diabetic rats for one week. Blood glucose level after administration was measured to examine hypoglycemic effect of the extract. The results obtained indicated that M. charantia was effective in lowering blood glucose level of the diabetic rats. The loading plot of Partial Least Square (PLS) component 1 showed that diabetic rats had increased levels of lactate and glucose in urine whereas normal and the extract treated diabetic rats had higher levels of succinate, creatine, creatinine, urea and phenylacetylglycine in urine. While the loading plot of PLS component 2 showed a higher levels of succinate, citrate, creatine, creatinine, sugars, and hippurate in urine of normal rat compared to the extract treated diabetic rat. Administration of M. charantia extract was found to be able to regulate the altered metabolic processes. Thus, it could be potentially used to treat the diabetic patients.
    
    Matched MeSH terms: Lactic Acid
  13. Latif IK, Karim AJ, Zuki AB, Zamri-Saad M, Niu JP, Noordin MM
    Poult Sci, 2010 Jul;89(7):1379-88.
    PMID: 20548065 DOI: 10.3382/ps.2009-00622
    Aftermath in several air pollution episodes with high concentrations of polycyclic aromatic hydrocarbons did not significantly affect health and performance of broilers despite its renowned sensitivity to polycyclic aromatic hydrocarbons. The aim of the study was to elucidate the previous lack of response in birds exposed to such severe episodes of air pollution. Benzo[a]pyrene (BaP) was used to simulate the influence of air pollution on hematology, selected organ function, and oxidative stress in broilers. One-day-old chicks were assigned to 5 equal groups composed of a control group, tricaprylin group, and 3 groups treated with BaP (at 1.5 microg, 150 microg, or 15 mg/kg of BW). The BaP was intratracheally administered to 1-d-old chicks for 5 consecutive days. The hematology, liver and kidney function, P450 activity, and malondialdehyde level especially in the group receiving 15 mg of BaP/kg of BW demonstrated evidence of hemato- and hepatoxicity via BaP-induced oxidative stress. The deleterious effect of exposure to high concentration of BaP in broiler chickens was probably due to the anatomy of this species and the half-life of BaP. Although the effect of BaP may be transient or irreversible, pathogen challenges faced during the period of suppression may prove fatal.
    Matched MeSH terms: Lactic Acid/blood
  14. Soo JS, Ng CH, Tan SH, Malik RA, Teh YC, Tan BS, et al.
    Apoptosis, 2015 Oct;20(10):1373-87.
    PMID: 26276035 DOI: 10.1007/s10495-015-1158-5
    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.
    Matched MeSH terms: Lactic Acid/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links