Displaying publications 141 - 160 of 992 in total

Abstract:
Sort:
  1. Azhar Mohamad
    MyJurnal
    The Gamma Green House (GGH) is a chronic irradiation facility located at MINT Tech Park, Nuclear Malaysia, Jalan Dengkil. GGH is used for induction of mutation in plants and other biological samples with low dose radiation over period of time depending on the nature and sensitivity of the plant species. Gamma Greenhouse facility at Malaysian Nuclear Agency comprises an open topped
    irradiation area consisting of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiation source is a REVISS RSL6050 double encapsulated 800 Ci 137Cs (half-life 30.1 years for 137Cs) pencils and allowed to be exposed only when the entire 300 m diameter site is free from personnel. The irradiator system is secured by a sophisticated interlock system, which only allows the source to be exposed when all the prerequisite safety conditions are met, and automatically returns the source to the safe
    storage position if any safety device is compromised.
    Matched MeSH terms: Mutation
  2. Subramaniam, K.S., Wong, M.S., Woo, Y.L., Mat Adenan, N.A., Mohamed, Z., Chung, I., et al.
    JUMMEC, 2013;16(1):1-5.
    MyJurnal
    Genetic mutations in endometrial cancer (EC) have been extensively studied in the Western population but not much in Asian cohorts. This study has demonstrated that PTEN and PIK3CA mutations are commonly found in EC among Malaysian women. Following RNA extraction from 20 cancerous and 18 non-cancerous tissues, the presence of mutations in 9 exons of PTEN and 3 exons of PIK3CA genes were detected using real-time PCR, accompanied by High Resolution Melt (HRM) analysis. Sequencing confirmed specificity of each PCR product. The mutations for both genes were detected in the samples with varying frequencies. Notably, all samples expressed mutation of PTEN at exon 7 but none in exon 4. Further analysis demonstrated that strong concurrent mutations occurred between exons 7 of PTEN with exon 20 region 1 of PIK3CA gene (90%). Our data showed mutations are present in EC and not the non-cancerous tissues. Larger samples are being collected to validate this observation.
    Matched MeSH terms: Mutation
  3. Chiew, Miao Si, Lai, Kok Song, Sobri Hussein, Janna Ong Abdullah
    MyJurnal
    Stevia rebaudiana Bertoni in the Asteraceae family is commercially valuable and cultivated throughout the world due to the great demand for its steviol glycosides (SGs) contents particularly rebaudioside A. Previous studies confirmed that maximal content of SGs in stevia was achieved at or just before flowering, and delayed flowering with long days provide longer duration for steviol glycosides accumulation. However, there is no suitable stevia variety to be cultivated in Malaysia due to her short day length. Mutation induction, including gamma irradiation, had been shown to be useful for generating genetic variations as well as developing new plant varieties from which desired mutants were successfully selected. The use of mutagens, both physical and chemical, has helped in creating mutants that expressed the selected desirable traits. This paper presents some selected essential data available in extant scientific studies on stevia with the focus on application of gamma irradiation on stevia. Both established achievements and recent publications of gamma radiation on stevia were reviewed. Emphasis is on the exceptional potential of stevia through induced mutation approach especially by using gamma rays.
    Matched MeSH terms: Mutation
  4. Lim SY, Tan AH, Ahmad-Annuar A, Schneider SA, Bee PC, Lim JL, et al.
    J Mov Disord, 2018 May;11(2):89-92.
    PMID: 29860786 DOI: 10.14802/jmd.17082
    We present a case of beta-propeller protein-associated neurodegeneration, a form of neurodegeneration with brain iron accumulation. The patient harbored a novel mutation in the WDR45 gene. A detailed video and description of her clinical condition are provided. Her movement disorder phenomenology was characterized primarily by limb stereotypies and gait dyspraxia. The patient's disability was advanced by the time iron-chelating therapy with deferiprone was initiated, and no clinical response in terms of cognitive function, behavior, speech, or movements were observed after one year of treatment.
    Matched MeSH terms: Mutation
  5. Lee, Von Yen, Leow, Poy Lee
    MyJurnal
    Goltz syndrome or Focal Dermal Hypoplasia (FDH) is an uncommon genetically inherited disorder characterized by distinctive skin abnormalities and a wide variety of multisystem defects which was first described by Goltz (an American dermatologist) in 1962. About 200- 300 cases have been reported worldwide. FDH can be inherited in an X-linked dominant manner with in-utero lethality in males. Majority of the cases are sporadic with new mutations arising in the embryo and not inherited from a parent. Approximately 10% of cases occur in males; postzygotic somatic mosaicism accounts for the findings in these affected males. FDH is caused by abnormalities or mutations at the PORCN gene in the X chromosome. We report a case of FDH with characteristic skin lesions as well as multiple digital anomalies - oligodactyly, syndactyly and ectrodactyly.(Copied from article)
    Matched MeSH terms: Mutation
  6. Tsai MH, Chan CK, Chang YC, Lin CH, Liou CW, Chang WN, et al.
    Front Neurol, 2018;9:515.
    PMID: 30034362 DOI: 10.3389/fneur.2018.00515
    Objective: Focal epilepsy is the most common subtype of epilepsies in which the influence of underlying genetic factors is emerging but remains largely uncharacterized. The purpose of this study is to determine the contribution of currently known disease-causing genes in a large cohort (n = 593) of common focal non-lesional epilepsy patients. Methods: The customized focal epilepsy gene panel (21 genes) was based on multiplex polymerase chain reaction (PCR) and sequenced by Illumina MiSeq platform. Results: Eleven variants (1.85%) were considered as pathogenic or likely pathogenic, including seven novel mutations. There were three SCN1A (p.Leu890Pro, p.Arg1636Ter, and p.Met1714Val), three PRRT2 (two p.Arg217Profs*8 and p.Leu298Pro), two CHRNA4 (p.Ser284Leu, p.Ile321Asn), one DEPDC5 (p.Val516Ter), one PCDH19 (p.Asp233Asn), and one SLC2A1 (p.Ser414Ter) variants. Additionally, 16 other rare variants were classified as unknown significance due to inconsistent phenotype or lack of segregation data. Conclusion: Currently known focal epilepsy genes only explained a very small subset of focal epilepsy patients. This indicates that the underlying genetic architecture of focal epilepsies is very heterogeneous and more novel genes are likely to be discovered. Our study highlights the usefulness, challenges and limitations of using the multi-gene panel as a diagnostic test in routine clinical practice in patients with focal epilepsy.
    Matched MeSH terms: Mutation
  7. Zakaria MA, Mohd Yusoff MZ, Zakaria MR, Hassan MA, Wood TK, Maeda T
    3 Biotech, 2018 Oct;8(10):435.
    PMID: 30306004 DOI: 10.1007/s13205-018-1461-2
    Pseudogenes in the Escherichia coli genome are assumed to be non-functional. In this study, Keio collection BW25113∆yqiG and YqiG-producing strain (BW25113/pCA24N-YqiG) were used to evaluate the importance of pseudogene yqiG in hydrogen metabolism. Our results show pseudogene protein YqiG was identified as an essential protein in the production of biohydrogen from glucose. The mutant yqiG decreased biohydrogen production from 37 µmol mg-1 protein to 6 µmol mg-1 protein compared to the wild-type strain, and glucose consumption was reduced by 80%. Through transcriptional analysis, we found that the yqiG mutation represses pflB transcription tenfold; pflB encodes pyruvate-formate lyase, one of the key enzymes in the anaerobic metabolism of E. coli. Moreover, production of YqiG stimulated glycolysis and increased biohydrogen productivity 1.5-fold compared to that of the wild-type strain. Thus, YqiG is important for the central glycolysis reaction and is able to influence hydrogen metabolism activity in E. coli.
    Matched MeSH terms: Mutation
  8. Faiz Ahmad, Zaiton Ahmad, Affrida Abu Hassan, Sakinah Ariffin, Norazlina Noordin, Shakinah Salleh, et al.
    MyJurnal
    The research on radiation induced mutation has been conducted as one of the promising method of plant breeding in Malaysia since 1980s. Nuclear Malaysia is leading research institute inMalaysia conducting plant mutationbreeding research. Gamma Greenhousefacility located in Nuclear Malaysiais one of the irradiation facilitiesto serve as a chronic irradiation facility for inducing mutation in various organisms including plants, fungi and microbes.Chronic irradiation refers to the exposure of materials at a lower dose rate over a long period of time. Previous studies have shown that this type of irradiation can minimize radiation damages to living materials and produces a wider mutation spectrum, therefore is very useful for trait improvements in irradiated organisms. Experiments on induce mutation using Gamma Greenhouse facility for crop improvement program have been conducted since its first operation in 2009. Various plant species including ornamental and herbal plants, food crops and industrial crops have been irradiated to improve their traits such as higher yield and biomass, pest and disease tolerance, higher bioactive compounds, longer bloom time and many others. Most of these crop improvement programs were done through collaborations with other agencies in Malaysia such as universities, research institutes and government departments. A number of publications on crop improvement using Gamma Greenhouse have been published inlocal and international journals as well as seminar presentations at national and international levels. The outputs from induced mutation via chronic radiation using Gamma Greenhouse could be of great interest for plant breeders dealing with improvement and development of new cultivars. This paper discusses the activities and achievement in plant breeding and improvement using Gamma Greenhouse Facility in Malaysia.
    Matched MeSH terms: Mutation
  9. Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra MT, González-Granado LI, et al.
    J Allergy Clin Immunol, 2019 Jan;143(1):359-368.
    PMID: 30273710 DOI: 10.1016/j.jaci.2018.09.009
    BACKGROUND: Postzygotic de novo mutations lead to the phenomenon of gene mosaicism. The 3 main types are called somatic, gonadal, and gonosomal mosaicism, which differ in terms of the body distribution of postzygotic mutations. Mosaicism has been reported occasionally in patients with primary immunodeficiency diseases (PIDs) since the early 1990s, but its real involvement has not been systematically addressed.

    OBJECTIVE: We sought to investigate the incidence of gene mosaicism in patients with PIDs.

    METHODS: The amplicon-based deep sequencing method was used in the 3 parts of the study that establish (1) the allele frequency of germline variants (n = 100), (2) the incidence of parental gonosomal mosaicism in families with PIDs with de novo mutations (n = 92), and (3) the incidence of mosaicism in families with PIDs with moderate-to-high suspicion of gene mosaicism (n = 36). Additional investigations evaluated body distribution of postzygotic mutations, their stability over time, and their characteristics.

    RESULTS: The range of allele frequency (44.1% to 55.6%) was established for germline variants. Those with minor allele frequencies of less than 44.1% were assumed to be postzygotic. Mosaicism was detected in 30 (23.4%) of 128 families with PIDs, with a variable minor allele frequency (0.8% to 40.5%). Parental gonosomal mosaicism was detected in 6 (6.5%) of 92 families with de novo mutations, and a high incidence of mosaicism (63.9%) was detected among families with moderate-to-high suspicion of gene mosaicism. In most analyzed cases mosaicism was found to be both uniformly distributed and stable over time.

    CONCLUSION: This study represents the largest performed to date to investigate mosaicism in patients with PIDs, revealing that it affects approximately 25% of enrolled families. Our results might have serious consequences regarding treatment and genetic counseling and reinforce the use of next-generation sequencing-based methods in the routine analyses of PIDs.

    Matched MeSH terms: Mutation
  10. Mohd Fadzli Ahmad, Hasdianty Abdullah
    MyJurnal
    The 3D structure of the insecticidal protein Cry1Ba4 produced by B. thuringiensis subsp.
    Entomocidus HD-9 was determined using homology modelling. From the model built, we have
    been able to identify the possible sites for structure modification by site-directed mutagenesis.
    The mutation was introduced at the conserved region of -helix 7 by substituting the
    hydrophobic motif that comprises alanine 216, leucine 217 and phenylalanine 218 with arginine.
    Wild and mutant Cry1Ba4 genes were cloned into pET200/D-TOPO and expressed in the
    expression host. The result suggests that mutant Cry1Ba4 protein was less toxic to the larvae
    Plutella xylostella compared to the wild-type. In conclusion, alteration in the structure of
    Domain I had left an impact on the toxicity of Cry1Ba4 against P. xylostella.
    Matched MeSH terms: Mutation
  11. Ali EZ, Yakob Y, Ngu LH
    Mol Genet Metab Rep, 2019 Dec;21:100525.
    PMID: 31709144 DOI: 10.1016/j.ymgmr.2019.100525
    Argininosuccinate lyase (ASL) deficiency impairs the function of the urea cycle that detoxifies blood ammonia in the body. Mutation that occurs in the ASL gene is the cause of occurrence of ASL deficiency (ASLD). This deficiency causes hyperammonemia, hepatopathy and neurodevelopmental delay in patients. In this study, the clinical characteristics and molecular analysis of 10 ASLD patients were presented. 8 patients were associated with severe neonatal onset, while the other 2 were associated with late onset. Molecular analysis of ASL gene identified four new missense variants, which were c.778C>T, p.(Leu260Arg), c.1340G>C, p.(Ser447Thr), c.436C>G, p.(Arg146Gly) and c.595C>G, p.(Leu199Val) and four reported missense variants, which were c.638G>A, p.(Arg213Gln); c.556C>T, p.(Arg186Trp), c.578G>A, p.(Arg193Gln) and c.436C>G, p.(Arg146Trp). In silico servers predicted all new and reported variants as disease-causing. Structural examination exhibited that all pathogenic variants affected the stability of the tetrameric ASL structure by disturbing the bonding pattern with the neighboring residues.

    Conclusion: This study revealed the genetic heterogeneity among Malaysian ASL patients. This study has also expanded the mutational spectrum of the ASL.

    Matched MeSH terms: Mutation
  12. Wong KK, Lawrie CH, Green TM
    Biomark Insights, 2019;14:1177271919846454.
    PMID: 31105426 DOI: 10.1177/1177271919846454
    Epigenetic alteration has been proposed to give rise to numerous classic hallmarks of cancer. Impaired DNA methylation plays a central role in the onset and progression of several types of malignancies, and DNA methylation is mediated by DNA methyltransferases (DNMTs) consisting of DNMT1, DNMT3A, and DNMT3B. DNMTs are frequently implicated in the pathogenesis and aggressiveness of acute myeloid leukaemia (AML) patients. In this review, we describe and discuss the oncogenic roles of DNMT1, DNMT3A, and DNMT3B in AML. The clinical response predictive roles of DNMTs in clinical trials utilising hypomethylating agents (azacitidine and decitabine) in AML patients are presented. Novel hypomethylating agent (guadecitabine) and experimental DNMT inhibitors in AML are also discussed. In summary, hypermethylation of tumour suppressors mediated by DNMT1 or DNMT3B contributes to the progression and severity of AML (except MLL-AF9 and inv(16)(p13;q22) AML for DNMT3B), while mutation affecting DNMT3A represents an early genetic lesion in the pathogenesis of AML. In clinical trials of AML patients, expression of DNMTs is downregulated by hypomethylating agents while the clinical response predictive roles of DNMT biomarkers remain unresolved. Finally, nucleoside hypomethylating agents have continued to show enhanced responses in clinical trials of AML patients, and novel non-nucleoside DNMT inhibitors have demonstrated cytotoxicity against AML cells in pre-clinical settings.
    Matched MeSH terms: Mutation
  13. Tan XL, Othman RY, Teo CH
    3 Biotech, 2020 Apr;10(4):183.
    PMID: 32257739 DOI: 10.1007/s13205-020-02176-7
    5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the primary target for the broad-spectrum herbicide, glyphosate. Improvement of EPSPS gene for high level of glyphosate tolerance is important to generate glyphosate-tolerant crops. In this study, we report the isolation and characterization of EPSPS genes of glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47. Both P. nitroreducens strains FY43 and FY47, which showed glyphosate tolerance up to 8.768% (518.4 mM, 32 × higher than field application), were isolated from soil samples collected from oil palm plantation with a long history of glyphosate application. The glyphosate tolerance property of EPSPS genes of strains FY43 and FY47 was functionally characterized by expressing the genes in Escherichia coli strain BL21(DE3). Error-prone PCR was performed to mutagenize native EPSPS gene of strains FY43 and FY47. Ten mutagenized EPSPS with amino acid changes (R21C, N265S, A329T, P71L, T258A, L184F, G292C, G292S, L35F and A242V) were generated through error-prone PCR. Both native and mutated EPSPS genes of strains FY43 and FY47 were introduced into Escherichia coli strain BL21(DE3) and transformants were selected on basal salt medium supplemented with 8.768% (518.4 mM) glyphosate. Mutants with mutations (R21C, N265S, A329T, P71L, T258A, L35F, A242V, L184F and G292C) showed sensitivity to 8.768% glyphosate, whereas glyphosate tolerance for mutant with G292S mutation was not affected by the mutation.
    Matched MeSH terms: Mutation
  14. Al-Mayouf SM, Alreefi HA, Alsinan TA, AlSalmi G, AlRowais A, Al-Herz W, et al.
    Mod Rheumatol, 2021 Nov;31(6):1171-1178.
    PMID: 33563058 DOI: 10.1080/14397595.2021.1886627
    OBJECTIVES: To report the phenotypic, genetic findings and outcome of children with lupus manifestations associated with primary immunodeficiency diseases (PIDs).

    METHODS: Data are retrospectively collected on patients with lupus manifestations and PIDs seen between 1998 and 2019. Data comprised the clinical findings and genetic testing, the response to treatment and the accrual damage related to SLE.

    RESULTS: A total of 39 patients (22 female) were reviewed. Thirty-four patients had lupus manifestations and six patients with SLE-like manifestations. Genetic analysis was performed in 25 patients. Complement deficiency was the most frequent PIDs; 26 patients were C1q deficient, three patients had C3 deficiency, two patients had C4 deficiency and one patient with heterozygous C8b variant. The other seven patients had different PIDs genetic defects that include SCID caused by PNP deficiency, CGD, CVID (PIK3CD), IL-2RB mutation, DNase II deficiency, STAT1 mutation, ISG15 mutation and Griscelli syndrome type 3. Mucocutaneous lesions, arthritis and lung involvement were the main clinical features. 84.1% experienced recurrent infections. The mean accrual damage was 2.7 ± 2.2. There were five deaths because of infection.

    CONCLUSION: This study suggests that patients with lupus manifestations and early onset disease, family history of SLE or recurrent infections should undergo immunological work-up and genetic testing to rule out PIDs.

    Matched MeSH terms: Mutation
  15. Awi NJ, Yap HY, Armon S, Low JSH, Peh KB, Peh SC, et al.
    Malays J Pathol, 2021 Aug;43(2):269-279.
    PMID: 34448791
    Autophagy is a host defensive mechanism responsible for eliminating harmful cellular components through lysosomal degradation. Autophagy has been known to either promote or suppress various cancers including colorectal cancer (CRC). KRAS mutation serves as an important predictive marker for epidermal growth factor receptor (EGFR)-targeted therapies in CRC. However, the relationship between autophagy and KRAS mutation in CRC is not well-studied. In this single-centre study, 92 formalin-fixed paraffin-embedded (FFPE) tissues of CRC patients (42 Malaysian Chinese and 50 Indonesian) were collected and KRAS mutational status was determined by quantitative PCR (qPCR) (n=92) while the expression of autophagy effector (p62, LC3A and LC3B) was examined by immunohistochemistry (IHC) (n=48). The outcomes of each were then associated with the clinicopathological variables (n=48). Our findings demonstrated that the female CRC patients have a higher tendency in developing KRAS mutation in the Malaysian Chinese population (p<0.05). Expression of autophagy effector LC3A was highly associated with the tumour grade in CRC (p<0.001) but not with other clinicopathological parameters. Lastly, the survival analysis did not yield a statistically significant outcome. Overall, this small cohort study concluded that KRAS mutation and autophagy effectors are not good prognostic markers for CRC patients.
    Matched MeSH terms: Mutation
  16. Myo, Thura Zaw, Ahmad Faris Abdullah, Naing, Oo Tha, Zainal Arifin Mustapha, Nor Amalina Emran, Zaw, Lin
    MyJurnal
    Emergence of multidrug resistant tuberculosis (MDR-TB) and extensively drug resistant tuberculosis (XDR-TB) is one of the reasons why tuberculosis (TB) continues to cause great mortality and morbidity in less-developed countries. The development of rapid diagnostic methods targeting genetic mutations associated with resistance to the anti-tuberculous drugs is essential to fight this deadly pathogen. Isoniazid (INH) has been included in the multidrug regimens for the treatment of drug-susceptible TB for the decades. In the worldwide setting, isoniazid resistance was highly prevalent and was observed in one of every seven TB cases. Since katG315 mutation is highly prevalent, the common mutation in the enzyme essential for the activation of the INH concerned with the mechanism of drug resistance and associated with high level resistance to INH, katG315 mutation was necessary to be identified by molecular method as a molecular determinant of INH resistant Mycobacterium tuberculosis. The prevalence of katG315 mutation in various countries was discussed in this report and a new molecular method for the detection of the mutation was proposed.
    Matched MeSH terms: Mutation
  17. Yap E, Tumian NR, Azma RZ, Sharifah NA, Salwati S, Hamidah NH, et al.
    Malays J Pathol, 2017 Aug;39(2):107-113.
    PMID: 28866691 MyJurnal
    Clinical resistance to imatinib (IM) in chronic myeloid leukemia (CML) carries adverse consequences. We investigated 22 CML patients who developed IM-resistance for BCR-ABL kinase domain (KD) mutations. The median follow-up for this study was 101.9 months (range: 22.2 to 176.5 months) and the estimated mean overall survival was 150.87 months (95% CI: 130.0 to 171.0). Five out of 22 patients tested positive for BCR-ABL KD mutations: 2 had T315I, 2 had E255K and 1 had V289F mutations. Of the remaining 17 patients who did not harbor BCR-ABL KD mutations, 11 patients received nilotinib while the rest continued on IM. All 17 achieved haematological remission but only 5 patients achieved complete cytogenetic remission, 4 of whom did so after switching to nilotinib. Our study shows that most of our IM-resistant patients do not test positive for BCR-ABL KD mutations by available testing methods and the role of second generation tyrosine kinase inhibitors remains undetermined. A critical analysis of the BCR-ABL KD mutations and the underlying mechanisms/ pathways of BCR-ABL independent IM-resistance along with potential treatments in the horizon will be discussed.
    Matched MeSH terms: Mutation
  18. Aziz H, Ping CY, Alias H, Ab Mutalib NS, Jamal R
    Front Pharmacol, 2017;8:897.
    PMID: 29270125 DOI: 10.3389/fphar.2017.00897
    It is believed that there are key differences in the genomic profile between adult and childhood acute myeloid leukemia (AML). Relapse is the significant contributor of mortality in patients with AML and remains as the leading cause of cancer death among children, posing great challenges in the treatment of AML. The knowledge about the genomic lesions in childhood AML is still premature as most genomic events defined in children were derived from adult cohorts. However, the emerging technologies of next generation sequencing have narrowed the gap of knowledge in the biology of AML by the detection of gene mutations for each sub-type which have led to the improvement in terms of prognostication as well as the use of targeted therapies. In this review, we describe the recent understanding of the genomic landscape including the prevalence of mutation, prognostic impact, and targeted therapies that will provide an insight into the pathogenesis of AML relapse in both adult and childhood cases.
    Matched MeSH terms: Mutation
  19. Kamiya K, Harada K, Clyde MM, Mohamed AL
    Genes Genet Syst, 2002 Jun;77(3):177-86.
    PMID: 12207039
    The genetic variation of Trigonobalanus verticillata, the most recently described genus of Fagaceae, was studied using chloroplast DNA sequences and AFLP fingerprinting. This species has a restricted distribution that is known to include seven localities in tropical lower montane forests in Malaysia and Indonesia. A total of 75 individuals were collected from Bario, Kinabalu, and Fraser's Hill in Malaysia. The sequences of rbcL, matK, and three non-coding regions (atpB-rbcL spacer, trnL intron, and trnL-trnF spacer) were determined for 19 individuals from these populations. We found a total of 30 nucleotide substitutions and four length variations, which allowed identification of three haplotypes characterizing each population. No substitutions were detected within populations, while the tandem repeats in the trnL -trnF spacer had a variable repeat number of a 20-bp motif only in Kinabalu. The differentiation of the populations inferred from the cpDNA molecular clock calibrated with paleontological data was estimated to be 8.3 MYA between Bario and Kinabalu, and 16.7 MYA between Fraser's Hill and the other populations. In AFLP analysis, four selective primer pairs yielded a total of 431 loci, of which 340 (78.9%) were polymorphic. The results showed relatively high gene diversity (H(S) = 0.153 and H(T) = 0.198) and nucleotide diversity (pi(S) = 0.0132 and pi(T) = 0.0168) both within and among the populations. Although the cpDNA data suggest that little or no gene flow occurred between the populations via seeds, the fixation index estimated from AFLP data (F(ST) = 0.153 and N(ST) = 0.214) implies that some gene flow occurs between populations, possibly through pollen transfer.
    Matched MeSH terms: Mutation
  20. Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, et al.
    Genet Med, 2022 Dec;24(12):2453-2463.
    PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007
    PURPOSE: Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects.

    METHODS: Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated.

    RESULTS: Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments.

    CONCLUSION: A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.

    Matched MeSH terms: Mutation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links