Displaying publications 141 - 160 of 170 in total

Abstract:
Sort:
  1. Faizal WM, Ghazali NNN, Khor CY, Badruddin IA, Zainon MZ, Yazid AA, et al.
    Comput Methods Programs Biomed, 2020 Nov;196:105627.
    PMID: 32629222 DOI: 10.1016/j.cmpb.2020.105627
    BACKGROUND AND OBJECTIVE: Human upper airway (HUA) has been widely investigated by many researchers covering various aspects, such as the effects of geometrical parameters on the pressure, velocity and airflow characteristics. Clinically significant obstruction can develop anywhere throughout the upper airway, leading to asphyxia and death; this is where recognition and treatment are essential and lifesaving. The availability of advanced computer, either hardware or software, and rapid development in numerical method have encouraged researchers to simulate the airflow characteristics and properties of HUA by using various patient conditions at different ranges of geometry and operating conditions. Computational fluid dynamics (CFD) has emerged as an efficient alternative tool to understand the airflow of HUA and in preparing patients to undergo surgery. The main objective of this article is to review the literature that deals with the CFD approach and modeling in analyzing HUA.

    METHODS: This review article discusses the experimental and computational methods in the study of HUA. The discussion includes computational fluid dynamics approach and steps involved in the modeling used to investigate the flow characteristics of HUA. From inception to May 2020, databases of PubMed, Embase, Scopus, the Cochrane Library, BioMed Central, and Web of Science have been utilized to conduct a thorough investigation of the literature. There had been no language restrictions in publication and study design of the database searches. A total of 117 articles relevant to the topic under investigation were thoroughly and critically reviewed to give a clear information about the subject. The article summarizes the review in the form of method of studying the HUA, CFD approach in HUA, and the application of CFD for predicting HUA obstacle, including the type of CFD commercial software are used in this research area.

    RESULTS: This review found that the human upper airway was well studied through the application of computational fluid dynamics, which had considerably enhanced the understanding of flow in HUA. In addition, it assisted in making strategic and reasonable decision regarding the adoption of treatment methods in clinical settings. The literature suggests that most studies were related to HUA simulation that considerably focused on the aspects of fluid dynamics. However, there is a literature gap in obtaining information on the effects of fluid-structure interaction (FSI). The application of FSI in HUA is still limited in the literature; as such, this could be a potential area for future researchers. Furthermore, majority of researchers present the findings of their work through the mechanism of airflow, such as that of velocity, pressure, and shear stress. This includes the use of Navier-Stokes equation via CFD to help visualize the actual mechanism of the airflow. The above-mentioned technique expresses the turbulent kinetic energy (TKE) in its result to demonstrate the real mechanism of the airflow. Apart from that, key result such as wall shear stress (WSS) can be revealed via turbulent kinetic energy (TKE) and turbulent energy dissipation (TED), where it can be suggestive of wall injury and collapsibility tissue to the HUA.

    Matched MeSH terms: Stress, Mechanical
  2. Jiang H, Peng H, Guo H, Zeng Y, Li L, Zhang Y, et al.
    ACS Appl Mater Interfaces, 2020 Nov 18;12(46):51344-51356.
    PMID: 33146507 DOI: 10.1021/acsami.0c13139
    Thin-film lithium-ion microbatteries with a high energy density and long lifespan are exceedingly desired for developing self-powered integrated micro-nano devices and systems. However, exploring high-performance thin-film anodes still remains a challenge. Herein, a double-layer-structure diamond-like carbon-ZnS (DLC-ZnS) thin-film anode fabricated by radio frequency magnetron sputtering exhibits high specific capacity and good cycling stability up to 1000 cycles, superior to the pure ZnS thin-film anode. To understand the mechanism, the bimodal amplitude modulated-frequency modulated atomic force microscopy was used to explore the mechanical properties of the thin films, and the DLC layer shows significantly higher Young's modulus than the ZnS thin film. The DLC interface with a high Young's modulus can effectively buffer the mechanical stress originating from the huge volume changes of the ZnS layer during lithiation/delithiation processes; therefore, the DLC interface maintains the higher mechanical integrity of the DLC-ZnS thin film and improves the utilization of ZnS. In addition, the electrochemical kinetics of the DLC-ZnS and ZnS thin films were also investigated by electrochemical methods. Electrochemical impedance spectroscopy tests indicate the obstacle of the DLC interface to Li+ ion diffusion in the initial charge/discharge processes; however, the DLC-ZnS thin film exhibits lower total resistance than the ZnS thin film afterward. In particular, galvanostatic intermittent titration technique tests were performed to find out the differences between the two thin films during the galvanostatical charge/discharge processes. The results demonstrate the obviously enhanced conversion reaction reversibility and decreased alloy reaction polarization of the DLC-ZnS thin film; therefore, it delivers higher reversible capacity.
    Matched MeSH terms: Stress, Mechanical
  3. Chong MY, Gu B, Chan BT, Ong ZC, Xu XY, Lim E
    Int J Numer Method Biomed Eng, 2020 12;36(12):e3399.
    PMID: 32862487 DOI: 10.1002/cnm.3399
    A monolithic, fully coupled fluid-structure interaction (FSI) computational framework was developed to account for dissection flap motion in acute type B aortic dissection (TBAD). Analysis of results included wall deformation, pressure, flow, wall shear stress (WSS), von Mises stress and comparison of hemodynamics between rigid wall and FSI models. Our FSI model mimicked realistic wall deformation that resulted in maximum compression of the distal true lumen (TL) by 21.4%. The substantial movement of intimal flap mostly affected flow conditions in the false lumen (FL). Flap motion facilitated more flow entering the FL at peak systole, with the TL to FL flow split changing from 88:12 in the rigid model to 83:17 in the FSI model. There was more disturbed flow in the FL during systole (5.8% FSI vs 5.2% rigid) and diastole (13.5% FSI vs 9.8% rigid), via a λ2 -criterion. The flap-induced disturbed flow near the tears in the FSI model caused an increase of local WSS by up to 70.0% during diastole. This resulted in a significant reduction in the size of low time-averaged WSS (TAWSS) regions in the FL (113.11 cm2 FSI vs 177.44 cm2 rigid). Moreover, the FSI model predicted lower systolic pressure, higher diastolic pressure, and hence lower pulse pressure. Our results provided new insights into the possible impact of flap motion on flow in aortic dissections, which are particularly important when evaluating hemodynamics of acute TBAD. NOVELTY STATEMENT: Our monolithic fully coupled FSI computational framework is able to reproduce experimentally measured range of flap deformation in aortic dissection, thereby providing novel insights into the influence of physiological flap motion on the flow and pressure distributions. The drastic flap movement increases the flow resistance in the true lumen and causes more disturbed flow in the false lumen, as visualized through the λ2 criterion. The flap-induced luminal pressure is dampened, thereby affecting pressure measures, which may serve as potential prognostic indicators for late complications in acute uncomplicated TBAD patients.
    Matched MeSH terms: Stress, Mechanical
  4. May Z, Alam MK, Mahmud MS, Rahman NAA
    PLoS One, 2020;15(11):e0242022.
    PMID: 33186372 DOI: 10.1371/journal.pone.0242022
    Damage assessment is a key element in structural health monitoring of various industrial applications to understand well and predict the response of the material. The big uncertainty in carbon fiber composite materials response is because of variability in the initiation and propagation of damage. Developing advanced tools to design with composite materials, methods for characterizing several damage modes during operation are required. While there is a significant amount of work on the analysis of acoustic emission (AE) from different composite materials and many loading cases, this research focuses on applying an unsupervised clustering method for separating AE data into several groups with distinct evolution. In this paper, we develop an adaptive sampling and unsupervised bivariate data clustering techniques to characterize the several damage initiations of a composite structure in different lay-ups. An adaptive sampling technique pre-processes the AE features and eliminates redundant AE data samples. The reduction of unnecessary AE data depends on the requirements of the proposed bivariate data clustering technique. The bivariate data clustering technique groups the AE data (dependent variable) with respect to the mechanical data (independent variable) to assess the damage of the composite structure. Tensile experiments on carbon fiber reinforced composite laminates (CFRP) in different orientations are carried out to collect mechanical and AE data and demonstrate the damage modes. Based on the mechanical stress-strain data, the results show the dominant damage regions in different lay-ups of specimens and the definition of the different states of damage. In addition, the states of the damage are observed using Scanning Electron Microscope (SEM) analysis. Based on the AE data, the results show that the strong linear correlation between AE and mechanical energy, and the classification of various modes of damage in all lay-ups of specimens forming clusters of AE energy with respect to the mechanical energy. Furthermore, the validation of the cluster-based characterization and improvement of the sensitivity of the damage modes classification are observed by the combined knowledge of AE and mechanical energy and time-frequency spectrum analysis.
    Matched MeSH terms: Stress, Mechanical
  5. Adi Azriff Basri, S.M Abdul Khader, Cherian Johny, Raghuvir Pai B, Mohammed Zuber, Zainuldin Ahmad, et al.
    MyJurnal
    Introduction: In this study, Renal artery (RA) stenosis of Single Stenosed (SS) and Double Stenosed (DS) with the condition of Normal Blood Pressure (NBP) and High Blood Pressure (HBP) were investigated using the aid of Fluid Structure Interaction (FSI) approach. Methods: Numerical analysis of 3D model patient’s specific abdominal aorta with RA stenosis was conducted using FSI solver in software ANSYS 18. Results: The results of velocity profile, pres- sure drop, time average wall shear stress (TAWSS), Oscillatory shear index (OSI) and total deformation of SS and DS with the condition of NBP and HBP were compared in terms of blood flow and structural wall tissue behaviour. The results concluded SS-NBP produced the highest value of velocity profile, TAWSS and OSI parameter compared to the others. Meanwhile, SS-HBP indicates the highest value pressure drop. On the other hand, SS-HBP and DS-HBP have a higher distribution of deformation contour and also maximum VMS compared to SS-NBP and DS-HBP. Conclusion: With the aid of FSI approach, this studied has proven that the existence of SS at RA location has a higher impact on the velocity magnitude, higher pressure drop, higher TAWSS and OSI value compared to the DS case. This is due to a high concentration of pressure acting at the narrow blood vessel of SS compared to DS cases which most of the blood flow will pass to the lower part of abdominal aorta.
    Matched MeSH terms: Stress, Mechanical
  6. Alsemiry RD, Sarifuddin, Mandal PK, Sayed HM, Amin N
    Biomed Res Int, 2020;2020:7609562.
    PMID: 32090110 DOI: 10.1155/2020/7609562
    The simultaneous effect of flexible wall and multiple stenoses on the flow and mass transfer of blood is investigated through numerical computation and simulations. The solution is obtained using the Marker and Cell technique on an axisymmetric model of Newtonian blood flow. The results compare favorably with physical observations where the pulsatile boundary condition and double stenoses result in a higher pressure drop across the stenoses. The streamlines, the iso-concentration lines, the Sherwood number, and the mass concentration variations along the entire wall segment provide a comprehensive analysis of the mass transport characteristics. The double stenoses and pulsatile inlet conditions increase the number of recirculation regions and effect a higher mass transfer rate at the throat, whereby more mass is expected to accumulate and cause further stenosis.
    Matched MeSH terms: Stress, Mechanical
  7. Sheikh Khozani Z, Sheikhi S, Mohtar WHMW, Mosavi A
    PLoS One, 2020;15(4):e0229731.
    PMID: 32271780 DOI: 10.1371/journal.pone.0229731
    Shear stress comprises basic information for predicting the average depth velocity and discharge in channels. With knowledge of the percentage of shear force carried by walls (%SFw) it is possible to more accurately estimate shear stress values. The %SFw, non-dimension wall shear stress ([Formula: see text]) and non-dimension bed shear stress ([Formula: see text]) in smooth rectangular channels were predicted by a three methods, the Bayesian Regularized Neural Network (BRNN), the Radial Basis Function (RBF), and the Modified Structure-Radial Basis Function (MS-RBF). For this aim, eight data series of research experimental results in smooth rectangular channels were used. The results of the new method of MS-RBF were compared with those of a simple RBF and BRNN methods and the best model was selected for modeling each predicted parameters. The MS-RBF model with RMSE of 3.073, 0.0366 and 0.0354 for %SFw, [Formula: see text] and [Formula: see text] respectively, demonstrated better performance than those of the RBF and BRNN models. The results of MS-RBF model were compared with three other proposed equations by researchers for trapezoidal channels and rectangular ducts. The results showed that the MS-RBF model performance in estimating %SFw, [Formula: see text] and [Formula: see text] is superior than those of presented equations by researchers.
    Matched MeSH terms: Stress, Mechanical*
  8. Al-Fasih MY, Kueh ABH, W Ibrahim MH
    PLoS One, 2020;15(2):e0227895.
    PMID: 32012168 DOI: 10.1371/journal.pone.0227895
    Skin crack defects can develop in sandwich honeycomb composite structures during service life due to static and impact loads. In this study, the fracture behavior of sandwich honeycomb composite (SHC) beams containing crack at the skin was investigated experimentally and numerically under four-point loading. Three different arrangements of unidirectional (UD) carbon fiber composite and the triaxially woven (TW) fabric were considered for the skins. The presence of a 10 mm crack at mid-span of the top skin, mid-span of the bottom skin, and mid-way between load and support of the top skin, respectively, were considered. Failure load equations of the load initiating the skin crack extension were analytically derived and then numerically developed using the J-integral approach. The crack extension failure mode dominated all cracked specimens except those with low-stiffness skin which were controlled by the compressive skin debonding and core shear failures.
    Matched MeSH terms: Stress, Mechanical*
  9. Patil PG, Seow LL, Uddanwadikar R, Ukey PD
    J Prosthet Dent, 2021 Jan;125(1):138.e1-138.e8.
    PMID: 33393474 DOI: 10.1016/j.prosdent.2020.09.015
    STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level.

    PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions.

    MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed.

    RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading.

    CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.

    Matched MeSH terms: Stress, Mechanical
  10. Honjo M, Yamagishi R, Igarashi N, Ku CY, Kurano M, Yatomi Y, et al.
    Sci Rep, 2021 01 12;11(1):747.
    PMID: 33436915 DOI: 10.1038/s41598-020-80736-w
    To evaluate the effect of postoperative corticosteroids on surgical outcome and autotaxin (ATX) levels after microhook ab interno trabeculotomy combined with cataract surgery (μLOT-CS), prospective, consecutive non-randomized case series comparing outcomes of 30 eyes with primary open angle glaucoma was performed. The aqueous ATX, intraocular pressure (IOP) and glaucoma medications were monitored for 3 months postoperatively. An in-vivo mouse μLOT model was generated. In vitro, ATX and fibrotic changes induced by dexamethasone (Dex) treatment following scratch (S) in cultured human trabecular meshwork (hTM) cells were assessed by immunofluorescence, immunoenzymatic assay, and RT-qPCR. Postoperative ATX at 1 week and the number of antiglaucoma medications at 3 months were significantly lower in non-steroid group, and steroid use was the only variable significantly associated with postoperative medications at 3 months in multiregression analyses. In vitro, ATX activity was significantly upregulated in the Dex + S group, and αSMA was significantly upregulated in the Dex and Dex + S groups. Fibronectin and COL1A1 were significantly upregulated in the S group. μLOT-CS decreased IOP and medications in the overall cohort, and non-use of postoperative steroids resulted in a smaller number of postoperative medications. Limiting postoperative steroids in μLOT may minimize IOP elevation and postoperative fibrosis.
    Matched MeSH terms: Stress, Mechanical
  11. Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546097 DOI: 10.3390/molecules26040773
    Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
    Matched MeSH terms: Stress, Mechanical*
  12. Hashim AN, Salleh MAAM, Sandu AV, Ramli MM, Yee KC, Mohd Mokhtar NZ, et al.
    Materials (Basel), 2021 Feb 05;14(4).
    PMID: 33562471 DOI: 10.3390/ma14040738
    The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint.
    Matched MeSH terms: Stress, Mechanical
  13. Hashmi MB, Lemma TA, Ahsan S, Rahman S
    Entropy (Basel), 2021 Feb 22;23(2).
    PMID: 33671488 DOI: 10.3390/e23020250
    Generally, industrial gas turbines (IGT) face transient behavior during start-up, load change, shutdown and variations in ambient conditions. These transient conditions shift engine thermal equilibrium from one steady state to another steady state. In turn, various aero-thermal and mechanical stresses are developed that are adverse for engine's reliability, availability, and overall health. The transient behavior needs to be accurately predicted since it is highly related to low cycle fatigue and early failures, especially in the hot regions of the gas turbine. In the present paper, several critical aspects related to transient behavior and its modeling are reviewed and studied from the point of view of identifying potential research gaps within the context of fault detection and diagnostics (FDD) under dynamic conditions. Among the considered topics are, (i) general transient regimes and pertinent model formulation techniques, (ii) control mechanism for part-load operation, (iii) developing a database of variable geometry inlet guide vanes (VIGVs) and variable bleed valves (VBVs) schedules along with selection framework, and (iv) data compilation of shaft's polar moment of inertia for different types of engine's configurations. This comprehensive literature document, considering all the aspects of transient behavior and its associated modeling techniques will serve as an anchor point for the future researchers, gas turbine operators and design engineers for effective prognostics, FDD and predictive condition monitoring for variable geometry IGT.
    Matched MeSH terms: Stress, Mechanical
  14. Eliaslankaran Z, Daud NNN, Yusoff ZM, Rostami V
    Materials (Basel), 2021 Feb 28;14(5).
    PMID: 33670914 DOI: 10.3390/ma14051140
    Coastal accretion and erosion are unavoidable processes as some coastal sediments undergo modification and stabilization. This study was conducted to investigate the geotechnical behavior of soil collected from Bagan Lalang coast and treated with lime, cement, and rice husk ash (RHA) to design a low-cost alternative mixture with environmentally friendly characteristics. Laboratory tests were carried out to analyze the physical properties of the soil (Atterberg limits and compaction properties), together with mechanical characteristics (direct shear and unconfined compressive strength (UCS) tests) to determine the effect of different ratios of stabilizer/pozzolan on the coastal soil and the optimum conditions for each mixture. Part of the purpose of this study was also to analyze the shear behavior of the coastal soil and monitor the maximum axial compressive stress that the treated specimens can bear under zero confining pressure. Compared to the natural soil, the soil treated with lime and rice husk ash (LRHA) in the ratio of 1:2 (8% lime content) showed a tremendous increase in shear stress under the normal stress of 200 kPa. The strength parameters such as the cohesion (c) and internal friction angle (ϕ) values showed a significant increase. Cohesion values increased considerably in samples cured for 90 days compared to specimens cured for 7 days with additional LRHA in the ratio of 1:2 (28%).
    Matched MeSH terms: Stress, Mechanical
  15. Asiri A, Saidin S, Sani MH, Al-Ashwal RH
    Sci Rep, 2021 Mar 11;11(1):5634.
    PMID: 33707606 DOI: 10.1038/s41598-021-85149-x
    In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198-286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young's modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14-21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
    Matched MeSH terms: Stress, Mechanical
  16. Mohd Roslan MR, Mohd Kamal NL, Abdul Khalid MF, Mohd Nasir NF, Cheng EM, Beh CY, et al.
    Materials (Basel), 2021 Apr 14;14(8).
    PMID: 33919814 DOI: 10.3390/ma14081960
    Hydroxyapatite (HA) has been widely used as a scaffold in tissue engineering. HA possesses high mechanical stress and exhibits particularly excellent biocompatibility owing to its similarity to natural bone. Nonetheless, this ceramic scaffold has limited applications due to its apparent brittleness. Therefore, this had presented some difficulties when shaping implants out of HA and for sustaining a high mechanical load. Fortunately, these drawbacks can be improved by combining HA with other biomaterials. Starch was heavily considered for biomedical device applications in favor of its low cost, wide availability, and biocompatibility properties that complement HA. This review provides an insight into starch/HA composites used in the fabrication of bone tissue scaffolds and numerous factors that influence the scaffold properties. Moreover, an alternative characterization of scaffolds via dielectric and free space measurement as a potential contactless and nondestructive measurement method is also highlighted.
    Matched MeSH terms: Stress, Mechanical
  17. Venugopal A, Mohammad R, Koslan MFS, Sayd Bakar SR, Ali A
    Materials (Basel), 2021 May 06;14(9).
    PMID: 34066461 DOI: 10.3390/ma14092414
    The environmental condition in which the Royal Malaysian Airforce is currently operating its aircraft is prone to corrosion. This is due to the high relative humidity and temperature. With most of its aircraft being in the legacy aircraft era, the aircraft's main construction consists of the aluminium 2024 material. However, this material is prone to corrosion, thus reducing fatigue life and leading to fatigue failure. Using the concept of either Safe Life or Damage Tolerance as its fatigue design philosophy, the RMAF adopts the Aircraft Structure Integrity Program (ASIP) to monitor its structural integrity. With the current problem of not having the structural limitation on corrosion-damaged structure, the RMAF has embarked on its fatigue testing method. Finite Element (FE) studies and flight tests were conducted, and the outcome is summarized. The conclusion is that the longeron tested on the aircraft can withstand the operational load, and its yield strength is below the ultimate yield strength of the material. These research outcomes will also enhance the ASIP for other aircraft platforms in the RMAF fleet for its structure life assessment or service life extension program.
    Matched MeSH terms: Stress, Mechanical
  18. Rabiatul AAR, Fatihhi SJ, Md Saad AP, Zakaria Z, Harun MN, Kadir MRA, et al.
    Biomech Model Mechanobiol, 2021 Jun;20(3):957-968.
    PMID: 33547975 DOI: 10.1007/s10237-021-01423-x
    The present study has sought to investigate the fluid characteristic and mechanical properties of trabecular bone using fluid-structure interaction (FSI) approach under different trabecular bone orientations. This method imposed on trabecular bone structure at both longitudinal and transverse orientations to identify effects on shear stress, permeability, stiffness and stress regarded to the trabeculae. Sixteen FSI models were performed on different range trabecular cubes of 27 mm3 with eight models developed for each longitudinal and transverse direction. Results show that there was a moderate correlation between permeability and porosity, and surface area in the longitudinal and transverse orientations. For the longitudinal orientation, the permeability values varied between 3.66 × 10-8 and 1.9 × 10-7 and the sheer stress values varied between 0.05 and 1.8 Pa, whilst for the transverse orientation, the permeability values varied between 5.95 × 10-10 and 1.78 × 10-8 and the shear stress values varied between 0.04 and 3.1 Pa. Here, transverse orientation limits the fluid flow from passing through the trabeculae due to high shear stress disturbance generated within the trabecular bone region. Compared to physiological loading direction (longitudinal orientation), permeability is higher within the range known to trigger a response in bone cells. Additionally, shear stresses also increase with bone surface area. This study suggests the shear stress within bone marrow in real trabecular architecture could provide the mechanical signal to marrow cells that leads to bone anabolism and can depend on trabecular orientation.
    Matched MeSH terms: Stress, Mechanical
  19. Lutfi SNN, Abd Razak NA, Ali S, Gholizadeh H
    Biomed Tech (Berl), 2021 Jun 25;66(3):317-322.
    PMID: 34062632 DOI: 10.1515/bmt-2019-0110
    Materials with low-strength and low-impedance properties, such as elastomers and polymeric foams are major contributors to prosthetic liner design. Polyethylene-Light (Pelite™) is a foam liner that is the most frequently used in prosthetics but it does not cater to all amputees' limb and skin conditions. The study aims to investigate the newly modified Foam Liner, a combination of two different types of foams (EVA + PU + EVA) as the newly modified Foam Liner in terms of compressive and tensile properties in comparison to Pelite™, polyurethane (PU) foam, and ethylene-vinyl acetate (EVA) foam. Universal testing machine (AGS-X, Shimadzu, Kyoto, Japan) has been used to measure the tensile and compressive stress. Pelite™ had the highest compressive stress at 566.63 kPa and tensile stress at 1145 kPa. Foam Liner fell between EVA and Pelite™ with 551.83 kPa at compression and 715.40 kPa at tension. PU foam had the lowest compressive stress at 2.80 kPa and tensile stress at 33.93 kPa. Foam Liner has intermediate compressive elasticity but has high tensile elasticity compared to EVA and Pelite™. Pelite™ remains the highest in compressive and tensile stiffness. Although it is good for amputees with bony prominence, constant pressure might result in skin breakdown or ulcer. Foam Liner would be the best for amputees with soft tissues on the residual limbs to accommodate movement.
    Matched MeSH terms: Stress, Mechanical
  20. Teo YX, Chan YS, Gouwanda D, Gopalai AA, Nurzaman SG, Thannirmalai S
    Sci Rep, 2021 07 22;11(1):15020.
    PMID: 34294775 DOI: 10.1038/s41598-021-94268-4
    Although global demand for palm oil has been increasing, most activities in the oil palm plantations still rely heavily on manual labour, which includes fresh fruit bunch (FFB) harvesting and loose fruit (LF) collection. As a result, harvesters and/or collectors face ergonomic risks resulting in musculoskeletal disorder (MSD) due to awkward, extreme and repetitive posture during their daily work routines. Traditionally, indirect approaches were adopted to assess these risks using a survey or manual visual observations. In this study, a direct measurement approach was performed using Inertial Measurement Units, and surface Electromyography sensors. The instruments were attached to different body parts of the plantation workers to quantify their muscle activities and assess the ergonomics risks during FFB harvesting and LF collection. The results revealed that the workers generally displayed poor and discomfort posture in both activities. Biceps, multifidus and longissimus muscles were found to be heavily used during FFB harvesting. Longissimus, iliocostalis, and multifidus muscles were the most used muscles during LF collection. These findings can be beneficial in the design of various assistive tools which could improve workers' posture, reduce the risk of injury and MSD, and potentially improve their overall productivity and quality of life.
    Matched MeSH terms: Stress, Mechanical
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links