RESULTS AND DISCUSSION: The synthesized analogues were characterized by FT-IR, 1H/13C-NMR and MS studies as well C, H, N analysis. All synthesized compounds were evaluated for in vitro antibacterial activity against Gram-positive (B. subtilis), Gram-negative (E. coli, P. aeruginosa, K. pneumoniae and S. typhi) strains and in vitro antifungal activity against C. albicans and A. niger strains by serial dilution method, the minimum inhibitory concentration (MIC) described in μM/ml. The in vitro anticancer activity of synthesized compounds was determined against human colorectal carcinoma cell line (HCT- 116) using 5-fluorouracil as standard drug.
CONCLUSION: In general, most of the synthesized derivatives exhibited significant antimicrobial and anticancer activities. Compounds 8, 10, 15, 16, 17, 20 and 22 showed significant antimicrobial activity towards tested bacterial and fungal strains and compound 26 exhibited significant anticancer activity.
OBJECTIVE: The present study was aimed to synthesize and evaluate antimicrobial and anticancer activities of Schiff bases of 2-mercaptobenzimidazole.
METHODS: The Schiff bases of 2-mercaptobenzimidazole were synthesized from 4-(2-(1H-benzo[d]- imidazol-2-ylthio)acetamido)benzohydrazide. The synthesized compounds were evaluated for antimicrobial and anticancer activities by tube dilution method and Sulforhodamine-B (SRB) assay, respectively.
RESULTS: Compounds 8 (MICpa, an = 2.41, 1.20 µM/ml), 10 (MICse, sa = 2.50 µM/ml), 20 (MICec = 2.34 µM/ml) and 25 (MICca = 1.46 µM/ml) showed significant antimicrobial activity against tested bacterial and fungal strains and compounds 20 (IC50 = 8 µg/ml) and 23 (IC50 = 7 µg/ml) exhibited significant anticancer activity.
CONCLUSION: In general, the synthesized derivatives exhibited moderate antimicrobial and anticancer activities. Compounds 8 and 25 having high antifungal potential among the synthesized compounds may be taken as lead molecules for the development of novel antifungal agents.
METHODS: CLSI broth microdilution methodology was used to determine antimicrobial activity and EUCAST breakpoints version 9.0 were used to determine rates of susceptibility and resistance. Isolates were also screened for the genes encoding extended-spectrum β-lactamases (ESBLs) or carbapenemases (including metallo-β-lactamases [MBLs]).
RESULTS: Between 2015 and 2017, this study collected a total of 7051 Enterobacterales isolates and 2032 Pseudomonas aeruginosa isolates from hospitalized patients in Australia, Japan, South Korea, Malaysia, the Philippines, Taiwan, and Thailand. In the Asia-Pacific region, Enterobacterales isolates that were ESBL-positive, carbapenemase-negative (17.9%) were more frequently identified than isolates that were carbapenemase-positive, MBL-negative (0.7%) or carbapenemase-positive, MBL-positive (1.7%). Multidrug-resistant (MDR) isolates of P. aeruginosa were more commonly identified (23.4%) than isolates that were ESBL-positive, carbapenemase-negative (0.4%), or carbapenemase-positive, MBL-negative (0.3%), or carbapenemase-positive, MBL-positive (3.7%). More than 90% of all Enterobacterales isolates, including the ESBL-positive, carbapenemase-negative subset and the carbapenemase-positive, MBL-negative subset, were susceptible to amikacin and ceftazidime-avibactam. Among the carbapenemase-positive, MBL-positive subset of Enterobacterales, susceptibility to the majority of agents was reduced, with the exception of colistin (93.4%). Tigecycline was active against all resistant subsets of the Enterobacterales (MIC90, 1-4 mg/L) and among Escherichia coli isolates, > 90% from each resistant subset were susceptible to tigecycline. More than 99% of all P. aeruginosa isolates, including MDR isolates and the carbapenemase-positive, MBL-positive subset, were susceptible to colistin.
CONCLUSIONS: In this study, amikacin, ceftazidime-avibactam, colistin and tigecycline appear to be potential treatment options for infections caused by Gram-negative pathogens in the Asia-Pacific region.