Displaying publications 161 - 180 of 1459 in total

Abstract:
Sort:
  1. Juliena Muhammed, Sanihah Abdul Halim, Wan Hazabbah Wan Hitam, Tharakan, John
    Neurology Asia, 2014;19(3):323-326.
    MyJurnal
    Migraine with aura is one of the major subtypes of migraine, and can be associated with ischaemic brain infarction. Use of oral contraceptive pills (OCPs) increases the risk of infarction in this type of migraine. Seizures and migraine also have a complex relationship, one element of which is migraine- triggered seizures. We report a case of bilateral occipital lobe infarction and migraine-triggered seizures, most likely precipitated by oral contraceptive pills (OCPs) in a patient with migraine with visual aura. OCPs, triptans and ergotamines should be used cautiously in these patients. Methods of birth control other than OCPs should be considered.
    Matched MeSH terms: Brain Infarction
  2. Norhayaty Samsudin, Tai, Evelyn Li Min, Chui, Yain Chen, Kumar, Lakana, Azhany Yaakub, Adil Hussein, et al.
    MyJurnal
    44-year-old Malay lady presented with drooping of the right eyelid and worsening of left eye vision for one week duration. There was associated headache, periorbital discomfort and diplopia on left gaze. She previously had a history of recurrent optic neuritis affecting both eyes over a period of 12 years. On examination, there was right-sided partial ptosis and left exotropia. The adduction, abduction, elevation and depression of the right eye was limited. Left eye extraocular movements were full. The right eye visual acuity was 6/9, while the left eye visual acuity was perception to light, with a positive relative afferent papillary defect and a pale optic disc. The right optic disc was normal. There was reduced sensation in the trigeminal nerve distribution over the right side of the face. Neurological examination was otherwise normal. Magnetic resonance imaging of the brain and orbit revealed meningeal thickening with involvement of the right orbital apex and cavernous sinus. Blood investigations for infectious and autoimmune causes were unremarkable. She was diagnosed to have idiopathic hypertrophic cranial pachymeningitis and treated with systemic corticosteroids. The right eye extraocular motility improved, while the left eye visual acuity improved to counting finger. This case demonstrates that idiopathic hypertrophic cranial pachymeningitis may present as recurrent optic neuritis in the early phase, before radiological evidence of the disease is present. A high index of suspicion for the underlying cause is essential to prevent irreversible optic nerve damage due to recurrent optic neuritis.
    Matched MeSH terms: Brain
  3. Pierot L, Jarayaman M, Szikora I, Hirsch J, Baxter B, Miyachi S, et al.
    Can J Neurol Sci, 2019 05;46(3):269-274.
    PMID: 30890199 DOI: 10.1017/cjn.2019.1
    After five positive randomized controlled trials showed benefit of mechanical thrombectomy in the management of acute ischemic stroke with emergent large-vessel occlusion, a multi-society meeting was organized during the 17th Congress of the World Federation of Interventional and Therapeutic Neuroradiology in October 2017 in Budapest, Hungary. This multi-society meeting was dedicated to establish standards of practice in acute ischemic stroke intervention aiming for a consensus on the minimum requirements for centers providing such treatment. In an ideal situation, all patients would be treated at a center offering a full spectrum of neuroendovascular care (a level 1 center). However, for geographical reasons, some patients are unable to reach such a center in a reasonable period of time. With this in mind, the group paid special attention to define recommendations on the prerequisites of organizing stroke centers providing medical thrombectomy for acute ischemic stroke, but not for other neurovascular diseases (level 2 centers). Finally, some centers will have a stroke unit and offer intravenous thrombolysis, but not any endovascular stroke therapy (level 3 centers). Together, these level 1, 2, and 3 centers form a complete stroke system of care. The multi-society group provides recommendations and a framework for the development of medical thrombectomy services worldwide.
    Matched MeSH terms: Brain Ischemia
  4. Nies YH, Mohamad Najib NH, Lim WL, Kamaruzzaman MA, Yahaya MF, Teoh SL
    Front Neurosci, 2021;15:660379.
    PMID: 33994934 DOI: 10.3389/fnins.2021.660379
    Parkinson's disease (PD) is a severely debilitating neurodegenerative disease, affecting the motor system, leading to resting tremor, cogwheel rigidity, bradykinesia, walking and gait difficulties, and postural instability. The severe loss of dopaminergic neurons in the substantia nigra pars compacta causes striatal dopamine deficiency and the presence of Lewy bodies indicates a pathological hallmark of PD. Although the current treatment of PD aims to preserve dopaminergic neurons or to replace dopamine depletion in the brain, it is notable that complete recovery from the disease is yet to be achieved. Given the complexity and multisystem effects of PD, the underlying mechanisms of PD pathogenesis are yet to be elucidated. The advancement of medical technologies has given some insights in understanding the mechanism and potential treatment of PD with a special interest in the role of microRNAs (miRNAs) to unravel the pathophysiology of PD. In PD patients, it was found that striatal brain tissue and dopaminergic neurons from the substantia nigra demonstrated dysregulated miRNAs expression profiles. Hence, dysregulation of miRNAs may contribute to the pathogenesis of PD through modulation of PD-associated gene and protein expression. This review will discuss recent findings on PD-associated miRNAs dysregulation, from the regulation of PD-associated genes, dopaminergic neuron survival, α-synuclein-induced inflammation and circulating miRNAs. The next section of this review also provides an update on the potential uses of miRNAs as diagnostic biomarkers and therapeutic tools for PD.
    Matched MeSH terms: Brain
  5. Najib NHM, Nies YH, Abd Halim SAS, Yahaya MF, Das S, Lim WL, et al.
    CNS Neurol Disord Drug Targets, 2020;19(5):386-399.
    PMID: 32640968 DOI: 10.2174/1871527319666200708124117
    Parkinson's Disease (PD) is one of the most common neurodegenerative disorders that affects the motor system, and includes cardinal motor symptoms such as resting tremor, cogwheel rigidity, bradykinesia and postural instability. Its prevalence is increasing worldwide due to the increase in life span. Although, two centuries since the first description of the disease, no proper cure with regard to treatment strategies and control of symptoms could be reached. One of the major challenges faced by the researchers is to have a suitable research model. Rodents are the most common PD models used, but no single model can replicate the true nature of PD. In this review, we aim to discuss another animal model, the zebrafish (Danio rerio), which is gaining popularity. Zebrafish brain has all the major structures found in the mammalian brain, with neurotransmitter systems, and it also possesses a functional blood-brain barrier similar to humans. From the perspective of PD research, the zebrafish possesses the ventral diencephalon, which is thought to be homologous to the mammalian substantia nigra. We summarize the various zebrafish models available to study PD, namely chemical-induced and genetic models. The zebrafish can complement the use of other animal models for the mechanistic study of PD and help in the screening of new potential therapeutic compounds.
    Matched MeSH terms: Brain/physiopathology*
  6. Mohamad Najib NH, Yahaya MF, Das S, Teoh SL
    Int J Neurosci, 2023 Dec;133(8):822-833.
    PMID: 34623211 DOI: 10.1080/00207454.2021.1990916
    INTRODUCTION: Parkinson's disease (PD) is the second most common neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Metallothionein has been shown to act as a neuroprotectant in various brain injury. Thus, this study aims to identify the effects of full-length human metallothionein 2 peptide (hMT2) in paraquat-induced brain injury in the zebrafish.

    METHODOLOGY: A total of 80 adult zebrafish were divided into 4 groups namely control, paraquat-treated, pre-hMT2-treated, and post-hMT2-treated groups. Fish were treated with paraquat intraperitoneally every 3 days for 15 days. hMT2 were injected intracranially on day 0 (pre-treated group) and day 16 (post-treated group). Fish were sacrificed on day 22 and the brains were collected for qPCR, ELISA and immunohistochemistry analysis.

    RESULTS: qPCR analysis showed that paraquat treatment down-regulated the expression of genes related to dopamine activity and biosynthesis (dat and th1) and neuroprotective agent (bdnf). Paraquat treatment also up-regulated the expression of the mt2, smtb and proinflammatory genes (il-1α, il-1β, tnf-α and cox-2). hMT2 treatment was able to reverse the effects of paraquat. Lipid peroxidation decreased in the paraquat and pre-hMT2-treated groups. However, lipid peroxidation increased in the post-hMT2-treated group. Paraquat treatment also led to a reduction of dopaminergic neurons while their numbers showed an increase following hMT2 treatment.

    CONCLUSION: Paraquat has been identified as one of the pesticides that can cause the death of dopaminergic neurons and affect dopamine biosynthesis. Treatment with exogenous hMT2 could reverse the effects of paraquat in the zebrafish brain.

    Matched MeSH terms: Brain Injuries*
  7. Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, et al.
    J Integr Neurosci, 2019 03 30;18(1):1-10.
    PMID: 31091842 DOI: 10.31083/j.jin.2019.01.105
    The physicality of subjectivity is explained through a theoretical conceptualization of guidance waves informing meaning in negentropically entangled non-electrolytic brain regions. Subjectivity manifests its influence at the microscopic scale of matter originating from de Broglie 'hidden' thermodynamics as action of guidance waves. The preconscious experienceability of subjectivity is associated with a nested hierarchy of microprocesses, which are actualized as a continuum of patterns of discrete atomic microfeels (or "qualia"). The mechanism is suggested to be through negentropic entanglement of hierarchical thermodynamic transfer of information as thermo-qubits originating from nonpolarized regions of actin-binding proteinaceous structures of nonsynaptic spines. The resultant continuous stream of intrinsic information entails a negentropic action (or experiential flow of thermo-quantum internal energy that results in a negentropic force) which is encoded through the non-zero real component of the mean approximation of the negentropic force as a 'consciousness code'. Consciousness consisting of two major subprocesses: (1) preconscious experienceability and (2) conscious experience. Both are encapsulated by nonreductive physicalism and panexperiential materialism. The subprocess (1) governing "subjectivity" carries many microprocesses leading to the actualization of discrete atomic microfeels by the 'consciousness code'. These atomic microfeels constitute internal energy that results in the transfer intrinsic information in terms of thermo-qubits. These thermo-qubits are realized as thermal entropy and sensed by subprocess (2) governing "self-awareness" in conscious experience.
    Matched MeSH terms: Brain/physiology*
  8. Hescham S, Jahanshahi A, Meriaux C, Lim LW, Blokland A, Temel Y
    Behav Brain Res, 2015 Oct 1;292:353-60.
    PMID: 26119240 DOI: 10.1016/j.bbr.2015.06.032
    Deep brain stimulation (DBS) has gained interest as a potential therapy for advanced treatment-resistant dementia. However, possible targets for DBS and the optimal stimulation parameters are not yet clear. Here, we compared the effects of DBS of the CA1 sub-region of the hippocampus, mammillothalamic tract, anterior thalamic nucleus, and entorhinal cortex in an experimental rat model of dementia. Rats with scopolamine-induced amnesia were assessed in the object location task with different DBS parameters. Moreover, anxiety-related side effects were evaluated in the elevated zero maze and open field. After sacrifice, we applied c-Fos immunohistochemistry to assess which memory-related regions were affected by DBS. When comparing all structures, DBS of the entorhinal cortex and CA1 sub-region was able to restore memory loss when a specific set of stimulation parameters was used. No anxiety-related side effects were found following DBS. The beneficial behavioral performance of CA1 DBS rats was accompanied with an activation of cells in the anterior cingulate gyrus. Therefore, we conclude that acute CA1 DBS restores memory loss possibly through improved attentional and cognitive processes in the limbic cortex.
    Matched MeSH terms: Brain/physiopathology*; Brain/surgery; Deep Brain Stimulation*
  9. Lim LW, Prickaerts J, Huguet G, Kadar E, Hartung H, Sharp T, et al.
    Transl Psychiatry, 2015;5:e535.
    PMID: 25826110 DOI: 10.1038/tp.2015.24
    Deep brain stimulation (DBS) is a promising therapy for patients with refractory depression. However, key questions remain with regard to which brain target(s) should be used for stimulation, and which mechanisms underlie the therapeutic effects. Here, we investigated the effect of DBS, with low- and high-frequency stimulation (LFS, HFS), in different brain regions (ventromedial prefrontal cortex, vmPFC; cingulate cortex, Cg; nucleus accumbens (NAc) core or shell; lateral habenula, LHb; and ventral tegmental area) on a variety of depressive-like behaviors using rat models. In the naive animal study, we found that HFS of the Cg, vmPFC, NAc core and LHb reduced anxiety levels and increased motivation for food. In the chronic unpredictable stress model, there was a robust depressive-like behavioral phenotype. Moreover, vmPFC HFS, in a comparison of all stimulated targets, produced the most profound antidepressant effects with enhanced hedonia, reduced anxiety and decreased forced-swim immobility. In the following set of electrophysiological and histochemical experiments designed to unravel some of the underlying mechanisms, we found that vmPFC HFS evoked a specific modulation of the serotonergic neurons in the dorsal raphe nucleus (DRN), which have long been linked to mood. Finally, using a neuronal mapping approach by means of c-Fos expression, we found that vmPFC HFS modulated a brain circuit linked to the DRN and known to be involved in affect. In conclusion, HFS of the vmPFC produced the most potent antidepressant effects in naive rats and rats subjected to stress by mechanisms also including the DRN.
    Matched MeSH terms: Brain/metabolism; Brain/physiopathology*; Deep Brain Stimulation/methods*
  10. Hardiany NS, Dewi PKK, Dewi S, Tejo BA
    Sci Rep, 2024 Jan 05;14(1):603.
    PMID: 38182767 DOI: 10.1038/s41598-024-51221-5
    In this study, the potential neuroprotective ability of coriander seeds (Coriandrum sativum L.) ethanolic extract (CSES) as a neuroprotectant agent in the brains of high-fat diet-induced obese rats was analyzed. The study investigated how CSES impacts oxidative stress markers (i.e., malondialdehyde/MDA, glutathione/GSH and catalase), inflammation marker (i.e., Interleukin-6/IL-6), cellular senescence markers (i.e., senescence-associated β-galactoside/SA-β-Gal activity and p16), brain damage marker (i.e., Neuron-specific Enolase/NSE), and neurogenesis markers (i.e., mature Brain-derived Neurotropic Factor/BDNF, pro-BDNF, and mature/pro-BDNF ratio). Male adult Wistar rats were fed a high-fat diet and given CSES once daily, at 100 mg/kg body weight, for 12 weeks. CSES significantly reduced MDA concentration (p = brain of obese rats; however, the decrease of IL-6, NSE, and p16 as well as the increase of catalase specific activity and BDNF expression were not significant. Moreover, the mature/pro-BDNF ratio was significantly higher in the brains of non-obese rats, both given the control diet and the high-fat diet compared to the control. Our results suggest that obese rats benefited from consuming CSES, showing improved oxidative stress levels, reduced cellular senescence and increased endogenous antioxidants, making CSES a potential neuroprotective agent.
    Matched MeSH terms: Brain; Brain-Derived Neurotrophic Factor
  11. Hisyam Jamari, Mohd Salleh Rofiee, Richard James Johari, Mohd Zaki Salleh, Teh, Lay Kek
    MyJurnal
    The potential of Moringa oleifera Lam. (Moringaceae) and Centella asiatica (L.) Urban (Apiaceae) extracts (TGT-PRIMAAGE) in slowing the decline of memory and learning activity was investigated using D-galactose-induced ageing rat model. The extracts were profiled and standardised based on markers identified using LC/MS-QTOF. Toxicity study of the extract was done, and the rat did not show any sign of toxicity. The extract was orally administered to the rat and dose dependent (100, 500 and 1000 mg/kg) efficacy were investigated. The rats were subjected to Morris Water Maze whereby 3 parameters were studied (number of entry to platform, latency and novel object recognition). Plasma was collected for the determination of catalase (CAT) activity and levels of malondialdehyde (MDA) and advanced glycation end products (AGEs). The activity of acetylcholinesterase (AChE), level of acetylcholine (ACh) and lipid peroxidation (LPO) were measured using the brain lysates. Significant improvement (p < 0.05) was seen in the memory and learning abilities in the aged rats that received medium and high dose of TGT-PRIMAAGE, and tocotrienol. Rats treated with TGT-PRIMAAGE had also shown improved CAT activity and resulted in reduced LPO. The level of ACh was found increased in parallel with the reduced AChE activity. The capabilities of learning and memory of the TGT-PRIMAAGE treated rats were enhanced via inhibition of AChE activity and subsequently increased level of ACh.
    Matched MeSH terms: Brain
  12. Cheah SK, Matthews T, Teh BS
    Asian Pac J Cancer Prev, 2016;17(9):4233-4235.
    PMID: 27797223
    BACKGROUND: Whole brain radiotherapy (WBRT) and stereotactic radiosurgery were frequently used to palliate patients with brain metastases. It remains controversial which modality or combination of therapy is superior especially in the setting of limited number of brain metastases. The availability of newer medical therapy that improves survival highlighted the importance of reducing long term radiation toxicity associated with WBRT. In this study, we aim to demonstrate the hippocampal sparing technique with whole brain and integrated simultaneous boost Materials and Methods: Planning data from 10 patients with 1-5 brain metastases treated with SRS were identified. Based on the contouring guideline from RTOG atlas, we identified and contoured the hippocampus with 5mm isocentric expansion to form the hippocampal avoidance structure. The plan was to deliver hippocampal sparing whole brain radiotherapy (HSWBRT) of 30 Gy in 10 fractions and simultaneous boost to metastatic lesions of 30 Gy in 10 fractions each.

    RESULTS: The PTV, hippocampus and hippocampal avoidance volumes ranges between 1.00 - 39.00 cc., 2.50 - 5.30 cc and 26.47 - 36.30 cc respectively. The mean hippocampus dose for the HSWBRT and HSWBRT and SIB plans was 8.06 Gy and 12.47 respectively. The max dose of optic nerve, optic chiasm and brainstem were kept below acceptable range of 37.5 Gy.

    CONCLUSIONS: The findings from this dosimetric study demonstrated the feasibility and safety of treating limited brain metastases with HSWBRT and SIB. It is possible to achieve the best of both worlds by combining HSWBRT and SIB to achieve maximal local intracranial control while maintaining as low a dose as possible to the hippocampus thereby preserving memory and quality of life.

    Matched MeSH terms: Brain Neoplasms/pathology; Brain Neoplasms/radiotherapy*; Brain Neoplasms/surgery*
  13. Foo LS, Larkin JR, Sutherland BA, Ray KJ, Yap WS, Hum YC, et al.
    Magn Reson Med, 2021 04;85(4):2188-2200.
    PMID: 33107119 DOI: 10.1002/mrm.28565
    PURPOSE: To assess the correlation and differences between common amide proton transfer (APT) quantification methods in the diagnosis of ischemic stroke.

    METHODS: Five APT quantification methods, including asymmetry analysis and its variants as well as two Lorentzian model-based methods, were applied to data acquired from six rats that underwent middle cerebral artery occlusion scanned at 9.4T. Diffusion and perfusion-weighted images, and water relaxation time maps were also acquired to study the relationship of these conventional imaging modalities with the different APT quantification methods.

    RESULTS: The APT ischemic area estimates had varying sizes (Jaccard index: 0.544 ≤ J ≤ 0.971) and had varying correlations in their distributions (Pearson correlation coefficient: 0.104 ≤ r ≤ 0.995), revealing discrepancies in the quantified ischemic areas. The Lorentzian methods produced the highest contrast-to-noise ratios (CNRs; 1.427 ≤ CNR ≤ 2.002), but generated APT ischemic areas that were comparable in size to the cerebral blood flow (CBF) deficit areas; asymmetry analysis and its variants produced APT ischemic areas that were smaller than the CBF deficit areas but larger than the apparent diffusion coefficient deficit areas, though having lower CNRs (0.561 ≤ CNR ≤ 1.083).

    CONCLUSION: There is a need to further investigate the accuracy and correlation of each quantification method with the pathophysiology using a larger scale multi-imaging modality and multi-time-point clinical study. Future studies should include the magnetization transfer ratio asymmetry results alongside the findings of the study to facilitate the comparison of results between different centers and also the published literature.

    Matched MeSH terms: Brain Neoplasms*
  14. Foo LS, Yap WS, Hum YC, Manan HA, Tee YK
    J Magn Reson, 2020 01;310:106648.
    PMID: 31760147 DOI: 10.1016/j.jmr.2019.106648
    Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) holds great potential to provide new metabolic information for clinical applications such as tumor, stroke and Parkinson's Disease diagnosis. Many active research and developments have been conducted to translate this emerging MRI technique for routine clinical applications. In general, there are two CEST quantification techniques: (i) model-free and (ii) model-based techniques. The reliability of these quantification techniques depends heavily on the experimental conditions and quality of the collected data. Errors such as noise may lead to misleading quantification results and thus inaccurate diagnosis when CEST imaging becomes a standard or routine imaging scan in the future. This paper investigates the accuracy and robustness of these quantification techniques under different signal-to-noise (SNR) levels and magnetic field strengths. The quantified CEST effect before and after adding random Gaussian White Noise using model-free and model-based quantification techniques were compared. It was found that the model-free technique consistently yielded larger average percentage error across all tested parameters compared to its model-based counterpart, and that the model-based technique could withstand SNR of about 3 times lower than the model-free technique. When applied on noisy brain tumor, ischemic stroke, and Parkinson's Disease clinical data, the model-free technique failed to produce significant differences between normal and abnormal tissue whereas the model-based technique consistently generated significant differences. Although the model-free technique was less accurate and robust, its simplicity and thus speed would still make it a good approximate when the SNR was high (>50) or when the CEST effect was large and well-defined. For more accurate CEST quantification, model-based techniques should be considered. When SNR was low (<50) and the CEST effect was small such as those acquired from clinical field strength scanners, which are generally 3T and below, model-based techniques should be considered over model-free counterpart to maintain an average percentage error of less than 44% even under very noisy condition as tested in this work.
    Matched MeSH terms: Brain Neoplasms/diagnosis
  15. Chin KY, Tay SS
    Nutrients, 2018 Jul 09;10(7).
    PMID: 29987193 DOI: 10.3390/nu10070881
    Alzheimer’s disease (AD) is plaguing the aging population worldwide due to its tremendous health care and socioeconomic burden. Current treatment of AD only offers symptomatic relief to patients. Development of agents targeting specific pathologies of AD is very slow. Tocotrienol, a member of the vitamin E family, can tackle many aspects of AD, such as oxidative stress, mitochondrial dysfunction and abnormal cholesterol synthesis. This review summarizes the current evidence on the role of tocotrienol as a neuroprotective agent. Preclinical studies showed that tocotrienol could reduce oxidative stress by acting as a free-radical scavenger and promoter of mitochondrial function and cellular repair. It also prevented glutamate-induced neurotoxicity in the cells. Human epidemiological studies showed a significant inverse relationship between tocotrienol levels and the occurrence of AD. However, there is no clinical trial to support the claim that tocotrienol can delay or prevent the onset of AD. As a conclusion, tocotrienol has the potential to be developed as an AD-preventing agent but further studies are required to validate its efficacy in humans.
    Matched MeSH terms: Brain/drug effects*; Brain/metabolism; Brain/pathology; Brain/physiopathology
  16. Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF, et al.
    Neuropathol. Appl. Neurobiol., 2009 Jun;35(3):296-305.
    PMID: 19473296 DOI: 10.1111/j.1365-2990.2008.00991.x
    To study the pathology of two cases of human Hendra virus infection, one with no clinical encephalitis and one with relapsing encephalitis.
    Matched MeSH terms: Brain/blood supply; Brain/immunology; Brain/pathology*; Brain/virology
  17. Abdullah MNS, Karpudewan M, Tanimale BM
    Trends Neurosci Educ, 2021 09;24:100159.
    PMID: 34412861 DOI: 10.1016/j.tine.2021.100159
    Advances in neuroscience studies have brought new insights into the development of Executive Functions (EFs) of the brain and its influence on understanding science concepts. This study was conducted to examine the relationships between three main components of EF: working memory, inhibition, set-shifting and understanding of Force concepts among adolescents. This study also investigated how gender mediates the relationships between the components of EF and understanding. Cambridge Neuropsychological Test Automated Battery was used to assess students' level of working memory, inhibition, and set-shifting. The Force Concept Test measured students understanding. Smart-PLS analysis was employed to examine the relationships between the three components of EF and understanding; and how gender mediates the relationships. The result reveals that working memory significantly relates to students' understanding of Force concepts in a positive direction. On the contrary, both set-shifting and inhibition exhibit non-significant relationships. The findings also demonstrate that gender does not significantly mediate the relationships. The findings are useful for Physics teachers to guide them through designing the curriculum and opting for an appropriate pedagogical strategy considering the role of the components of EF for teaching the lessons on Force.
    Matched MeSH terms: Brain
  18. Low, Qin Jia, Huan, Nai Chien, Tan, Wei Lun
    MyJurnal
    Dandy-Walker syndrome is a rare congenital malformation of the brain that involves the cerebellum and the fourth ventricle. It is characterised by a classical triad of hydrocephalus, cystic dilatation of the fourth ventricle and complete or partial agenesis of the vermis. Majority of cases are diagnosed during neonatal or early infantile period. In this case report, a seven-year-old boy complained of recurrent headaches for the past one year. Physical examination was unremarkable. Examination of the fundus on the same day revealed bilateral papilloedema. His subsequent computed tomography scan of the brain done at a major district hospital demonstrated features in keeping with Dandy-Walker malformation. Our case highlighted the importance of embarking on a detailed and thorough approach when dealing with a child with chronic headache, especially in rural settings where advanced medical equipment is not readily available.
    Matched MeSH terms: Brain
  19. Badrisyah I, Saiful R, Rahmat H, Naik VR, Tan YC
    Med J Malaysia, 2012 Dec;67(6):613-5.
    PMID: 23770956 MyJurnal
    Metastasis of an atrial myxoma to the brain is extremely rare. Thus far there are only 17 cases reported, including our present case. Most of the brain metastases manifest only in 3 to 6 decades, after an average time frame of one to two years after surgical removal of parental tumour. We present a case of brain metastases of atrial myxoma in a teenager of the youngest age among all reported cases, unusually as early as 15 years old. The progress of the metastatic process had been insidious for three years after heart surgery, The imaging demonstrated a rather sizeable tumour by the time when the patient is symptomatic. The location of the metastatic tumour is anyhow superficial to the cortical surface, enabling complete surgical excision of the tumour easily achievable with favourable outcome.
    Matched MeSH terms: Brain; Brain Neoplasms/surgery
  20. Chan KH, Tharakan J, Pal HK, Khan N, Tan YC
    Malays J Med Sci, 2010 Oct;17(4):36-43.
    PMID: 22135559
    Post-traumatic seizure is a well-known and serious complication of traumatic brain injury (TBI). The incidence and risk factors vary among study populations. Very little data have been published concerning this in the Malaysian population. The aim of this study was to ascertain the risk factors for the development of early post-traumatic seizures among patients with TBI.
    Matched MeSH terms: Brain Injuries, Traumatic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links