Displaying publications 161 - 180 of 1461 in total

Abstract:
Sort:
  1. Gilles H
    Med J Malaysia, 1976 Sep;31(1):10-3.
    PMID: 799232
    Matched MeSH terms: Brain Diseases/drug therapy
  2. Koh, O.H., Azreen Hashim, N., Gill, J.S., Pillai, S.K.
    MyJurnal
    It has been long known that affective disorders as a result of organic brain diseases are not uncommon. Neurological disorders seem to be significant as risk factors for newly diagnosed mania in the elderly. It has been theorized that lesions in the right cerebral hemisphere and limbic structures may produce symptoms suggestive of mania. Even though specific areas of involvement had not been determined, this case discussed below clearly reports a right sided lesion. One of the reasons why not much is known yet about this clinical entity is the rarity of this occurrence. In fact, in one large scale study, only 2 patients out of 700 were identified with mania.
    Matched MeSH terms: Brain; Brain Diseases
  3. Arumugasamy N
    Med J Malaya, 1969 Sep;24(1):45-8.
    PMID: 4243843
    Matched MeSH terms: Brain/pathology*
  4. Hamada M, Zaidan BB, Zaidan AA
    J Med Syst, 2018 Jul 24;42(9):162.
    PMID: 30043178 DOI: 10.1007/s10916-018-1020-8
    The study of electroencephalography (EEG) signals is not a new topic. However, the analysis of human emotions upon exposure to music considered as important direction. Although distributed in various academic databases, research on this concept is limited. To extend research in this area, the researchers explored and analysed the academic articles published within the mentioned scope. Thus, in this paper a systematic review is carried out to map and draw the research scenery for EEG human emotion into a taxonomy. Systematically searched all articles about the, EEG human emotion based music in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 1999 to 2016. These databases feature academic studies that used EEG to measure brain signals, with a focus on the effects of music on human emotions. The screening and filtering of articles were performed in three iterations. In the first iteration, duplicate articles were excluded. In the second iteration, the articles were filtered according to their titles and abstracts, and articles outside of the scope of our domain were excluded. In the third iteration, the articles were filtered by reading the full text and excluding articles outside of the scope of our domain and which do not meet our criteria. Based on inclusion and exclusion criteria, 100 articles were selected and separated into five classes. The first class includes 39 articles (39%) consists of emotion, wherein various emotions are classified using artificial intelligence (AI). The second class includes 21 articles (21%) is composed of studies that use EEG techniques. This class is named 'brain condition'. The third class includes eight articles (8%) is related to feature extraction, which is a step before emotion classification. That this process makes use of classifiers should be noted. However, these articles are not listed under the first class because these eight articles focus on feature extraction rather than classifier accuracy. The fourth class includes 26 articles (26%) comprises studies that compare between or among two or more groups to identify and discover human emotion-based EEG. The final class includes six articles (6%) represents articles that study music as a stimulus and its impact on brain signals. Then, discussed the five main categories which are action types, age of the participants, and number size of the participants, duration of recording and listening to music and lastly countries or authors' nationality that published these previous studies. it afterward recognizes the main characteristics of this promising area of science in: motivation of using EEG process for measuring human brain signals, open challenges obstructing employment and recommendations to improve the utilization of EEG process.
    Matched MeSH terms: Brain/physiology
  5. Cheah CF, Kofler M, Schiefecker AJ, Beer R, Klug G, Pfausler B, et al.
    Neurocrit Care, 2017 04;26(2):284-291.
    PMID: 28000134 DOI: 10.1007/s12028-016-0334-y
    BACKGROUND: Takotsubo cardiomyopathy (TC) is a well-known complication after aneurysmal subarachnoid hemorrhage and has been rarely described in patients with traumatic brain injury (TBI).

    METHODS: Case report and review of literature.

    RESULTS: Here, we report a 73-year-old woman with mild traumatic brain injury (TBI) presenting in cardiogenic shock. Takotsubo cardiomyopathy (TC) was diagnosed by repeated echocardiography. Cardiovascular support by inotropic agents led to hemodynamic stabilization after initiation of levosimendan. Cardiac function fully recovered within 21 days. We performed an in-depth literature review and identified 16 reported patients with TBI and TC. Clinical course and characteristics are discussed in the context of our patient.

    CONCLUSION: Takotsubo cardiomyopathy is under-recognized after TBI and may negatively impact outcome if left untreated.

    Matched MeSH terms: Brain Injuries, Traumatic/complications*
  6. Das, P., Naing, N.N., Wan-Arfah, N., Noorjan, K., Kueh, Y.C., Rasalingam, K.
    JUMMEC, 2019;22(2):31-38.
    MyJurnal
    Background: Astrocytic gliomas are the most common primary brain tumors that developed from glial origin.
    The angiogenic cell population from brain tumor enhances the recruitment of circulating cancer stem cells
    homing towards tumor site.

    Objectives: This study aimed to investigate the tumor angiogenic cell population that stained with CD133+
    and VEGFA+ markers and its association with circulating cancer stem cell (CD133+/VEGFR2-) population in the
    peripheral blood mononuclear cells (PBMCs) of astrocytic glioma patients.

    Methods: A total of 22 astrocytic glioma patients from Hospital Universiti Sains Malaysia who consented to
    the study were included. Tumors (n=22) were sliced and stained with CD133+ and VEGFA+ angiogenic markers
    and counter stained with DAPI. The circulating cancer stem cells (CD133+/VEGFR2-) in PBMCs (n=22) were
    quantified using FACS based on the expression of CD133 and VEGFR2 markers. The paired t-test and Pearson
    correlation were used for the data analysis.

    Results: The percentage of angiogenic cell population was significantly higher in brain tumor compared to
    adjacent normal brain tissue (1.25 ± 0.96% vs. 0.74 ± 0.68%; paired t-test=2.855; df=21, p = 0.009). Positive
    correlation was found between the angiogenic cells of brain tumor tissue and adjacent normal brain tissue
    (Pearson correlation, r = 0.53, p = 0.011). Significant positive correlation was found between angiogenic cells
    in glioma tumor and cancer stem cells in peripheral circulating systems of astrocytic glioma patients (Pearson
    correlation, r = 0.42, p = 0.049).

    Conclusion: Angiogenic cells in the brain tumor resident promote the recruitment of circulating cancer stem cells
    homing to the tumor site and induce the proliferation and growth of the tumor in astrocytic glioma patients.
    Matched MeSH terms: Brain; Brain Neoplasms
  7. Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, et al.
    J Integr Neurosci, 2019 03 30;18(1):1-10.
    PMID: 31091842 DOI: 10.31083/j.jin.2019.01.105
    The physicality of subjectivity is explained through a theoretical conceptualization of guidance waves informing meaning in negentropically entangled non-electrolytic brain regions. Subjectivity manifests its influence at the microscopic scale of matter originating from de Broglie 'hidden' thermodynamics as action of guidance waves. The preconscious experienceability of subjectivity is associated with a nested hierarchy of microprocesses, which are actualized as a continuum of patterns of discrete atomic microfeels (or "qualia"). The mechanism is suggested to be through negentropic entanglement of hierarchical thermodynamic transfer of information as thermo-qubits originating from nonpolarized regions of actin-binding proteinaceous structures of nonsynaptic spines. The resultant continuous stream of intrinsic information entails a negentropic action (or experiential flow of thermo-quantum internal energy that results in a negentropic force) which is encoded through the non-zero real component of the mean approximation of the negentropic force as a 'consciousness code'. Consciousness consisting of two major subprocesses: (1) preconscious experienceability and (2) conscious experience. Both are encapsulated by nonreductive physicalism and panexperiential materialism. The subprocess (1) governing "subjectivity" carries many microprocesses leading to the actualization of discrete atomic microfeels by the 'consciousness code'. These atomic microfeels constitute internal energy that results in the transfer intrinsic information in terms of thermo-qubits. These thermo-qubits are realized as thermal entropy and sensed by subprocess (2) governing "self-awareness" in conscious experience.
    Matched MeSH terms: Brain/physiology*
  8. Mat Zin AA, Zulkarnain S
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):321-325.
    PMID: 30803189
    Glioma is the commonest primary intracranial tumour and it has been the most predominant tumour in many studies.
    It accounts for 24.7% of all primary brain tumour and 74.6% of malignant brain tumour. Intraoperative diagnosis
    plays a crucial role in determining the patient management. Frozen section has been the established technique in
    providing rapid and accurate intraoperative diagnosis. However due to some disadvantages like ice crystal artefact,
    high expenditure and requirement of skilled technician, there is increase usage of cytology smear either replacing or
    supplementing frozen section technique. The aim of this review is to determine the diagnostic accuracy of cytology
    smear and frozen section in glioma and to see whether there is significant difference between those techniques. The
    overall diagnostic accuracy for frozen section in glioma ranging from 78.4% to 95% while for cytology smear, the
    diagnostic accuracy ranging from 50% to 100%. Based on certain literatures, no statistically difference was observed
    in diagnostic accuracy of cytology smear and frozen section. Thus, cytology smear provides an alternative method in
    establishing intraoperative diagnosis. Both cytology smear and frozen section are complimentary to each other. It is
    recommended to use both techniques to improve the diagnostic accuracy in addition with adequate knowledge, clinical
    history, neuroimaging and intraoperative findings.
    Matched MeSH terms: Brain Neoplasms/diagnosis*
  9. Al-Qazzaz NK, Alyasseri ZAA, Abdulkareem KH, Ali NS, Al-Mhiqani MN, Guger C
    Comput Biol Med, 2021 10;137:104799.
    PMID: 34478922 DOI: 10.1016/j.compbiomed.2021.104799
    Stroke is the second foremost cause of death worldwide and is one of the most common causes of disability. Several approaches have been proposed to manage stroke patient rehabilitation such as robotic devices and virtual reality systems, and researchers have found that the brain-computer interfaces (BCI) approaches can provide better results. Therefore, the most challenging tasks with BCI applications involve identifying the best technique(s) that can reveal the neuron stimulus information from the patients' brains and extracting the most effective features from these signals as well. Accordingly, the main novelty of this paper is twofold: propose a new feature fusion method for motor imagery (MI)-based BCI and develop an automatic MI framework to detect the changes pre- and post-rehabilitation. This study investigated the electroencephalography (EEG) dataset from post-stroke patients with upper extremity hemiparesis. All patients performed 25 MI-based BCI sessions with follow up assessment visits to examine the functional changes before and after EEG neurorehabilitation. In the first stage, conventional filters and automatic independent component analysis with wavelet transform (AICA-WT) denoising technique were used. Next, attributes from time, entropy and frequency domains were computed, and the effective features were combined into time-entropy-frequency (TEF) attributes. Consequently, the AICA-WT and the TEF fusion set were utilised to develop an AICA-WT-TEF framework. Then, support vector machine (SVM), k-nearest neighbours (kNN) and random forest (RF) classification technique were tested for MI-based BCI rehabilitation. The proposed AICA-WT-TEF framework with RF classifier achieves the best results compared with other classifiers. Finally, the proposed framework and feature fusion set achieve a significant performance in terms of accuracy measures compared to the state-of-the-art. Therefore, the proposed methods could be crucial for improving the process of automatic MI rehabilitation and are recommended for implementation in real-time applications.
    Matched MeSH terms: Brain-Computer Interfaces*
  10. Dzulkarnain AAA, Shahrudin FA, Jamal FN, Marzuki MN, Mazlan MNS
    Am J Audiol, 2020 Dec 09;29(4):838-850.
    PMID: 32966099 DOI: 10.1044/2020_AJA-20-00049
    Purpose The purpose of this study is to investigate the influence of stimulus repetition rates on the auditory brainstem response (ABR) to Level-Specific (LS) CE-Chirp and click stimuli at multiple intensity levels in normal-hearing adults. Method A repeated-measure study design was used on 13 normal-hearing adults. ABRs were acquired from the study participants using LS CE-Chirp and click stimuli at four stimulus repetition rates (19.1, 33.3, 61.1, and 81.1 Hz) and four intensity levels (80, 60, 40, and 20 dB nHL). The ABR test was stopped at 40-nV residual noise level. Results High-stimulus repetition rates caused the ABR latencies to be longer and have reduced amplitudes in both ABR to LS CE-Chirp and click stimuli. The ABR to LS CE-Chirp Wave I, III, and V amplitudes were larger than ABR to click in almost all the stimulus repetition rates. However, there were no differences in the number of averages required to reach the stopping criterion between ABR to LS CE-Chirp and click stimulus, and between high-stimulus repetition rates and low-stimulus repetition rates. Conclusion The LS CE-Chirp at standard low-stimulus repetition rates can be used to elicit ABR for both neurodiagnostic and threshold seeking procedure.
    Matched MeSH terms: Evoked Potentials, Auditory, Brain Stem*
  11. Abdi Alkareem Alyasseri Z, Alomari OA, Al-Betar MA, Awadallah MA, Hameed Abdulkareem K, Abed Mohammed M, et al.
    Comput Intell Neurosci, 2022;2022:5974634.
    PMID: 35069721 DOI: 10.1155/2022/5974634
    Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain's electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.
    Matched MeSH terms: Brain-Computer Interfaces*
  12. Tsutsui K, Osugi T, Son YL, Ubuka T
    Gen Comp Endocrinol, 2018 08 01;264:48-57.
    PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024
    Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
    Matched MeSH terms: Brain/metabolism
  13. Kalinichenko LS, Mühle C, Jia T, Anderheiden F, Datz M, Eberle AL, et al.
    Cereb Cortex, 2023 Jan 05;33(3):844-864.
    PMID: 35296883 DOI: 10.1093/cercor/bhac106
    Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.
    Matched MeSH terms: Brain/metabolism
  14. Laili IN, Nasir MHM, Jufri NF, Ibrahim FW, Hamid A
    Biomed Pharmacother, 2023 May;161:114501.
    PMID: 36931027 DOI: 10.1016/j.biopha.2023.114501
    Lysosome is a primary degradative organelle and is crucial in cellular homeostasis. A reduction in its function due to ageing has been associated with the development of Alzheimer's disease (AD), a common neurodegenerative disorder characterised by the deposition of neurotoxic amyloid plaque in the brain and cerebral vessel walls. The breakdown of the blood-brain barrier (BBB) plays a vital role in the pathogenesis of AD. However, the impact of lysosomal dysfunction on brain endothelial cells, the key component of the BBB, in the disease progression is yet to be fully understood. In this study, human brain endothelial cells (HBEC-5i) were exposed to a lysosomotropic compound, chloroquine (CQ) for 24 h. Cell viability was assessed with the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay to determine the inhibitory concentration (IC) at IC10 (17.5 µM), IC25 (70.5 µM), and IC50 (125 µM). The morphological changes observed include vacuoles arrested in the cytosols and cell shrinkage that were more prominent at IC25 and IC50. Lysosomal dysfunction was evaluated by measuring the lysosomal-associated membrane protein-1 (LAMP-1) and microtubule-associated protein light chain 3-II (LC3-II) using the capillary-based immunoassay. LC3-II was significantly increased at IC25 and IC50 (p 
    Matched MeSH terms: Brain/metabolism
  15. Edros R, Feng TW, Dong RH
    SAR QSAR Environ Res, 2023;34(6):475-500.
    PMID: 37409842 DOI: 10.1080/1062936X.2023.2230868
    Current in silico modelling techniques, such as molecular dynamics, typically focus on compounds with the highest concentration from chromatographic analyses for bioactivity screening. Consequently, they reduce the need for labour-intensive in vitro studies but limit the utilization of extensive chromatographic data and molecular diversity for compound classification. Compound permeability across the blood-brain barrier (BBB) is a key concern in central nervous system (CNS) drug development, and this limitation can be addressed by applying cheminformatics with codeless machine learning (ML). Among the four models developed in this study, the Random Forest (RF) algorithm with the most robust performance in both internal and external validation was selected for model construction, with an accuracy (ACC) of 87.5% and 86.9% and area under the curve (AUC) of 0.907 and 0.726, respectively. The RF model was deployed to classify 285 compounds detected using liquid chromatography quadrupole time-of-flight mass spectrometry (LCQTOF-MS) in Kelulut honey; of which, 140 compounds were screened with 94 descriptors. Seventeen compounds were predicted to permeate the BBB, revealing their potential as drugs for treating neurodegenerative diseases. Our results highlight the importance of employing ML pattern recognition to identify compounds with neuroprotective potential from the entire pool of chromatographic data.
    Matched MeSH terms: Blood-Brain Barrier*
  16. Huang T, Fakurazi S, Cheah PS, Ling KH
    Int J Mol Sci, 2023 Jun 10;24(12).
    PMID: 37373133 DOI: 10.3390/ijms24129980
    Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
    Matched MeSH terms: Brain/metabolism
  17. Song J, Shin SD, Jamaluddin SF, Chiang WC, Tanaka H, Song KJ, et al.
    J Neurotrauma, 2023 Jul;40(13-14):1376-1387.
    PMID: 36656672 DOI: 10.1089/neu.2022.0280
    Abstract Traumatic brain injury (TBI) is a significant healthcare concern in several countries, accounting for a major burden of morbidity, mortality, disability, and socioeconomic losses. Although conventional prognostic models for patients with TBI have been validated, their performance has been limited. Therefore, we aimed to construct machine learning (ML) models to predict the clinical outcomes in adult patients with isolated TBI in Asian countries. The Pan-Asian Trauma Outcome Study registry was used in this study, and the data were prospectively collected from January 1, 2015, to December 31, 2020. Among a total of 6540 patients (≥ 15 years) with isolated moderate and severe TBI, 3276 (50.1%) patients were randomly included with stratification by outcomes and subgrouping variables for model evaluation, and 3264 (49.9%) patients were included for model training and validation. Logistic regression was considered as a baseline, and ML models were constructed and evaluated using the area under the precision-recall curve (AUPRC) as the primary outcome metric, area under the receiver operating characteristic curve (AUROC), and precision at fixed levels of recall. The contribution of the variables to the model prediction was measured using the SHapley Additive exPlanations (SHAP) method. The ML models outperformed logistic regression in predicting the in-hospital mortality. Among the tested models, the gradient-boosted decision tree showed the best performance (AUPRC, 0.746 [0.700-0.789]; AUROC, 0.940 [0.929-0.952]). The most powerful contributors to model prediction were the Glasgow Coma Scale, O2 saturation, transfusion, systolic and diastolic blood pressure, body temperature, and age. Our study suggests that ML techniques might perform better than conventional multi-variate models in predicting the outcomes among adult patients with isolated moderate and severe TBI.
    Matched MeSH terms: Brain Injuries, Traumatic*
  18. Lee VWM, Khoo TB, Teh CM, Heng HS, Li L, Yusof YLM, et al.
    Dev Med Child Neurol, 2023 Sep;65(9):1256-1263.
    PMID: 36748407 DOI: 10.1111/dmcn.15536
    This case series compared clinical variables and various combinations of immunotherapy received with outcomes of patients with severe acute necrotizing encephalopathy (ANE). We performed a retrospective review of clinical variables, immunotherapy received, and outcomes (based on the modified Rankin Scale) in Malaysia between February 2019 and January 2020. Twenty-seven children (12 male), aged 7 months to 14 years (mean 4 years) at diagnosis were included. Of these, 23 had an ANE severity score of 5 to 9 out of 9 (high risk). Eleven patients received tocilizumab (four in combination with methylprednisolone [MTP], seven with MTP + intravenous immunoglobulin [IVIG]) and 16 did not (two received MTP alone, 14 received MTP + IVIG). Nine died. Among the survivors, six had good outcomes (modified Rankin Score 0-2) at 6 months follow-up. All patients who received tocilizumab in combination with MTP + IVIG survived. Twenty children received first immunotherapy within 48 hours of admission. No significant association was found between the timing of first immunotherapy with outcomes. Those with brainstem dysfunction (p = 0.016) were observed to have poorer outcomes. This study showed a trend towards better survival when those with severe ANE were treated with tocilizumab in combination with MTP + IVIG. However, larger studies will be needed to determine the effect of this regime on the long-term outcomes.
    Matched MeSH terms: Brain Diseases*
  19. Ang HP, Makpol S, Nasaruddin ML, Ahmad NS, Tan JK, Wan Zaidi WA, et al.
    Int J Mol Sci, 2023 Jul 31;24(15).
    PMID: 37569622 DOI: 10.3390/ijms241512248
    Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 μg/kg, and (3) sham-operated rats treated with i.p. LPS 100 μg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.
    Matched MeSH terms: Brain Ischemia*
  20. Lai CD, Marret MJ, Jayanath S, Azanan MS
    Child Abuse Negl, 2023 Nov;145:106434.
    PMID: 37657172 DOI: 10.1016/j.chiabu.2023.106434
    BACKGROUND: Abusive head trauma (AHT) is a major cause of traumatic brain injury in infancy. This exploratory study compared standardized developmental assessment versus functional outcome assessment between 18 months and 5 years of age following AHT in infancy.

    METHODS: Observational cross-sectional study after surviving AHT in infancy. Seventeen children between 18 months and 5 years of age underwent clinical examination, developmental assessment using the Schedule of Growing Skills II (SGS II) and functional assessment using the Glasgow Outcome Scale-Extended Pediatric Revision (GOS-E Peds). Additional clinical information was extracted from medical records.

    RESULTS: Age at assessment ranged from 19 to 53 months (median 26 months). Most (n = 14) were delayed in at least 1 domain, even without neurological or visual impairment or visible cortical injury on neuroimaging, including 8 children with favourable GOS-E Peds scores. The most affected domain was hearing and language. Delay in the manipulative domain (n = 6) was associated with visual and/or neurological impairment and greater severity of delay across multiple domains. Eleven (64.7 %) had GOS-E Peds scores indicating good recovery, with positive correlation between GOS-Peds scores and number of domains delayed (r = 0.805, p 

    Matched MeSH terms: Brain Injuries, Traumatic*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links