Displaying publications 161 - 180 of 276 in total

Abstract:
Sort:
  1. Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, et al.
    Planta, 2019 Sep;250(3):803-820.
    PMID: 31267230 DOI: 10.1007/s00425-019-03191-6
    MAIN CONCLUSION: Bambara groundnut has the potential to be used to contribute more the climate change ready agriculture. The requirement for nitrogen fixing, stress tolerant legumes is clear, particularly in low input agriculture. However, ensuring that existing negative traits are tackled and demand is stimulated through the development of markets and products still represents a challenge to making greater use of this legume. World agriculture is currently based on very limited numbers of crops, representing a significant risk to food supplies, particularly in the face of climate change which is expected to increase the frequency of extreme events. Minor and underutilised crops can help to develop a more resilient and nutritionally dense future agriculture. Bambara groundnut [Vigna subterranea (L.) Verdc.[, as a drought resistant, nitrogen-fixing, legume has a role to play. However, as with most underutilised crops, there are significant gaps in knowledge and also negative traits such as 'hard-to-cook' and 'photoperiod sensitivity to pod filling' associated with the crop which future breeding programmes and processing methods need to tackle, to allow it to make a significant contribution to the well-being of future generations. The current review assesses these factors and also considers what are the next steps towards realising the potential of this crop.
    Matched MeSH terms: Climate Change*
  2. Mabhaudhi T, Chimonyo VGP, Hlahla S, Massawe F, Mayes S, Nhamo L, et al.
    Planta, 2019 Sep;250(3):695-708.
    PMID: 30868238 DOI: 10.1007/s00425-019-03129-y
    Orphan crops can contribute to building resilience of marginal cropping systems as a climate chnage adaptation strategy. Orphan crops play an important role in global food and nutrition security, and may have potential to contribute to sustainable food systems under climate change. Owing to reports of their potential under water scarcity, there is an argument to promote them to sustainably address challenges such as increasing drought and water scarcity, food and nutrition insecurity, environmental degradation, and employment creation under climate change. We conducted a scoping review using online databases to identify the prospects of orphan crops to contribute to (1) sustainable and healthy food systems, (2) genetic resources for future crop improvement, and (3) improving agricultural sustainability under climate change. The review found that, as a product of generations of landrace agriculture, several orphan crops are nutritious, resilient, and adapted to niche marginal agricultural environments. Including such orphan crops in the existing monocultural cropping systems could support more sustainable, nutritious, and diverse food systems in marginalised agricultural environments. Orphan crops also represent a broad gene pool for future crop improvement. The reduction in arable land due to climate change offers opportunities to expand the area under their production. Their suitability to marginal niche and low-input environments offers opportunities for low greenhouse gas (GHG) emissions from an agro-ecosystems, production, and processing perspective. This, together with their status as a sub-set of agro-biodiversity, offers opportunities to address socio-economic and environmental challenges under climate change. With research and development, and policy to support them, orphan crops could play an important role in climate-change adaptation, especially in the global south.
    Matched MeSH terms: Climate Change*
  3. Soper FM, MacKenzie RA, Sharma S, Cole TG, Litton CM, Sparks JP
    Glob Chang Biol, 2019 Aug 29.
    PMID: 31465581 DOI: 10.1111/gcb.14813
    Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4 ) production in mangrove sediments. The establishment of non-native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C ha-1 , and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10-fold (to 4.5 Mg C ha-1 yr-1 ), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2-4%, equivalent to 30-60 Mg CO2 -eq ha-1 over mangrove lifetime (100-year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.
    Matched MeSH terms: Climate Change
  4. Mwungu CM, Shikuku KM, Atibo C, Mwongera C
    Data Brief, 2019 Apr;23:103818.
    PMID: 31372462 DOI: 10.1016/j.dib.2019.103818
    Climate change, degradation of natural resources, conflict or civil war, diseases and poverty are among the key threats that impact agriculture, human nutrition, food security and food safety among rural households in developing countries. Sustainability of food systems and livelihoods will thus crucially depend on not only the ability to accommodate or recover from these threats but also to tap into opportunities for strengthening long-term capabilities. One approach to enhancing resilience to enhance food security and nutrition is building an evidence base to better understand the various types of smallholders, threats to agriculture production and the associated risks to food security and nutrition and household food preferences. Unfortunately, such data in many African countries is still unavailable or has not been shared publicly. In this paper, we describe data that were collected in Nwoya district, Northern Uganda in December 2017. These data can be used to assess the relationship between resilience of farm households to climatic risks and their food and nutrition security.
    Matched MeSH terms: Climate Change
  5. Puppim de Oliveira JA
    J Environ Manage, 2019 Mar 01;233:481-488.
    PMID: 30594113 DOI: 10.1016/j.jenvman.2018.11.097
    Institutions for environmental governance evolve differently across sectors. They also vary in the same sector when governments at two levels (national and subnational) have different political alignments. As the policy environment becomes more complex, with global problems like climate change, and politics more dividing, better coordination among various levels of government is a tough governance challenge. Scholars and practitioners need to realize how best to build institutions to bridge the various levels of government in different political environments and environmental sectors. This research analyzes the influence of intergovernmental relations in two environmental sectors in two localities with contrasting political alignments between two levels of government. It draws lessons from solid waste management and climate policy in two Malaysian states (Johor and Penang). In an evolving State and new policy arenas, when formal institutions for intergovernmental relations may not be effectively in place, politics play an even larger role through the discretionary power of federal and subnational authorities. An open political process can help with the engagement of different political groups and civil society to bring legitimacy, resources and efficiency to environmental management, if it is done with robust intergovernmental institutions; otherwise, intergovernmental relations can also become a tool for zero-sum games, cronyism and patrimonialism, which can undermine policies, and result in inefficiencies and ineffectiveness in environmental management.
    Matched MeSH terms: Climate Change*
  6. Bais AF, Bernhard G, McKenzie RL, Aucamp PJ, Young PJ, Ilyas M, et al.
    Photochem Photobiol Sci, 2019 Mar 01;18(3):602-640.
    PMID: 30810565 DOI: 10.1039/c8pp90059k
    This report assesses the effects of stratospheric ozone depletion and anticipated ozone recovery on the intensity of ultraviolet (UV) radiation at the Earth's surface. Interactions between changes in ozone and changes in climate, as well as their effects on UV radiation, are also considered. These evaluations focus mainly on new knowledge gained from research conducted during the last four years. Furthermore, drivers of changes in UV radiation other than ozone are discussed and their relative importance is assessed. The most important of these factors, namely clouds, aerosols and surface reflectivity, are related to changes in climate, and some of their effects on short- and long-term variations of UV radiation have already been identified from measurements. Finally, projected future developments in stratospheric ozone, climate, and other factors affecting UV radiation have been used to estimate changes in solar UV radiation from the present to the end of the 21st century. New instruments and methods have been assessed with respect to their ability to provide useful and accurate information for monitoring solar UV radiation at the Earth's surface and for determining relevant exposures of humans. Evidence since the last assessment reconfirms that systematic and accurate long-term measurements of UV radiation and stratospheric ozone are essential for assessing the effectiveness of the Montreal Protocol and its Amendments and adjustments. Finally, we have assessed aspects of UV radiation related to biological effects and human health, as well as implications for UV radiation from possible solar radiation management (geoengineering) methods to mitigate climate change.
    Matched MeSH terms: Climate Change*
  7. Tang KHD
    Sci Total Environ, 2019 Feb 10;650(Pt 2):1858-1871.
    PMID: 30290336 DOI: 10.1016/j.scitotenv.2018.09.316
    PURPOSE: This paper reviews the past and future trends of climate change in Malaysia, the major contributors of greenhouse gases and the impacts of climate change to Malaysia. It also reviews the mitigation and adaptations undertaken, and future strategies to manage the impacts of regional climate change.

    METHODOLOGY: The review encompasses historical climate data comprising mean daily temperature, precipitation, mean sea level and occurrences of extreme weather events. Future climate projections have also been reviewed in addition to scholarly papers and news articles related to impacts, contributors, mitigation and adaptations in relation to climate change.

    FINDINGS: The review shows that annual mean temperature, occurrences of extreme weather events and mean sea level are rising while rainfall shows variability. Future projections point to continuous rise of temperature and mean sea level till the end of the 21st century, highly variable rainfall and increased frequency of extreme weather events. Climate change impacts particularly on agriculture, forestry, biodiversity, water resources, coastal and marine resources, public health and energy. The energy and waste management sectors are the major contributors to climate change. Mitigation of and adaptations to climate change in Malaysia revolve around policy setting, enactment of laws, formulation and implementation of plans and programmes, as well as global and regional collaborations, particularly for energy, water resources, agriculture and biodiversity. There are apparent shortcomings in continuous improvement and monitoring of the programmes as well as enforcement of the relevant laws.

    ORIGINALITY/VALUE: This paper presents a comprehensive review of the major themes of climate change in Malaysia and recommends pertinent ways forward to fill the gaps of mitigation and adaptations already implemented.

    Matched MeSH terms: Climate Change
  8. Arshad S, Ahmad M, Saboor A, Ibrahim FH, Mustafa MRU, Zafar M, et al.
    Microsc Res Tech, 2019 Feb;82(2):92-100.
    PMID: 30511479 DOI: 10.1002/jemt.23106
    Climate change is the most realistic theory of this era. Sudden and drastic changes are happening on the earth and the survival of mankind is becoming questionable in the future. The plants play the key role in controlling the climate change. The study emphasizes on role of trees in the cop up or damaging the climate of this earth, whether they are medicinal trees or economically important trees. Due to the overgrazing and intense deforestation the climate is being affected hazardously. The global warming phenomenon is occurring due to the less availability of trees and more carbon dioxide in the atmosphere. In total 20 plants were collected from across the Pakistan on the basis of their abundance and their key roles. Out of which seeds of eight plants were scanned through scanning electron microscope for correct authentication and importance of these medicinally important trees in mitigating the climate change. RESEARCH HIGHLIGHTS: The role of forest sector in the climate's change mitigation. Medicinally and economically important tree species across Pakistan. By using SEM, Ultra seed sculpturing features as an authentication tool. To formulate some policies to stop or control deforestation.
    Matched MeSH terms: Climate Change*
  9. Sarkar MSK, Al-Amin AQ, Filho WL
    Environ Sci Pollut Res Int, 2019 Feb;26(6):6000-6013.
    PMID: 30612378 DOI: 10.1007/s11356-018-3947-1
    This article projects the social cost of carbon (SCC) and other related consequences of climate change by using Malaysia's intended nationally determined contribution (INDC) and climate vision 2040 (CV2040) by 2050. It compares the projections derived from the Dynamic Integrated Model of the Climate and Economy (DICME) based on the respective INDC and CV2040 scenario. The results reveal that industrial emissions would incur a substantial increase every 5 years under the scenario CV2040, while Malaysia would experience lower industrial emissions in the coming years under the scenario INDC. Emission intensity in Malaysia will be 0.61 and 0.59 tons/capita in 2030 for scenario CV2040 and scenario INDC respectively. Malaysia would face climate damage of MYR456 billion and MYR 49 billion by 2050 under CV2040 and INDC scenario respectively. However, climate damage could be much lower if the INDC regime were adopted, as this scenario would decrease climatic impacts over time. The estimated SSC per ton of CO2 varies between MYR74 and MYR97 for scenario CV2040 and MYR44 and MYR62 for scenario INDC in 2030 and 2050 respectively. Considering different aspects, including industrial emissions, damage cost, and social cost of carbon, INDC is the best policy compared to CV2040. Thus, Malaysia could achieve its emissions reduction target by implementing INDC by 2050.
    Matched MeSH terms: Climate Change
  10. Curnick DJ, Pettorelli N, Amir AA, Balke T, Barbier EB, Crooks S, et al.
    Science, 2019 01 18;363(6424):239.
    PMID: 30655434 DOI: 10.1126/science.aaw0809
    Matched MeSH terms: Climate Change
  11. Ashton LA, Griffiths HM, Parr CL, Evans TA, Didham RK, Hasan F, et al.
    Science, 2019 01 11;363(6423):174-177.
    PMID: 30630931 DOI: 10.1126/science.aau9565
    Termites perform key ecological functions in tropical ecosystems, are strongly affected by variation in rainfall, and respond negatively to habitat disturbance. However, it is not known how the projected increase in frequency and severity of droughts in tropical rainforests will alter termite communities and the maintenance of ecosystem processes. Using a large-scale termite suppression experiment, we found that termite activity and abundance increased during drought in a Bornean forest. This increase resulted in accelerated litter decomposition, elevated soil moisture, greater soil nutrient heterogeneity, and higher seedling survival rates during the extreme El Niño drought of 2015-2016. Our work shows how an invertebrate group enhances ecosystem resistance to drought, providing evidence that the dual stressors of climate change and anthropogenic shifts in biotic communities will have various negative consequences for the maintenance of rainforest ecosystems.
    Matched MeSH terms: Climate Change
  12. Mincham G, Baldock KL, Rozilawati H, Williams CR
    Epidemiol Infect, 2019 01;147:e125.
    PMID: 30869038 DOI: 10.1017/S095026881900030X
    Dengue infection in China has increased dramatically in recent years. Guangdong province (main city Guangzhou) accounted for more than 94% of all dengue cases in the 2014 outbreak. Currently, there is no existing effective vaccine and most efforts of control are focused on the vector itself. This study aimed to evaluate different dengue management strategies in a region where this disease is emerging. This work was done by establishing a dengue simulation model for Guangzhou to enable the testing of control strategies aimed at vector control and vaccination. For that purpose, the computer-based dengue simulation model (DENSiM) together with the Container-Inhabiting Mosquito Simulation Model (CIMSiM) has been used to create a working dengue simulation model for the city of Guangzhou. In order to achieve the best model fit against historical surveillance data, virus introduction scenarios were run and then matched against the actual dengue surveillance data. The simulation model was able to predict retrospective outbreaks with a sensitivity of 0.18 and a specificity of 0.98. This new parameterisation can now be used to evaluate the potential impact of different control strategies on dengue transmission in Guangzhou. The knowledge generated from this research would provide useful information for authorities regarding the historic patterns of dengue outbreaks, as well as the effectiveness of different disease management strategies.
    Matched MeSH terms: Climate Change
  13. Narinderjeet Kaur, Syed Sharizman Syed Abdul Rahim, Zahir Izuan Azhar, Mohd Yusof Ibrahim, Mohammad Saffree Jeffree, Mohd Rohaizat Hassan
    MyJurnal
    Introduction: One of the biggest global health threats of the 21st century is climate change It is so catastrophic that the climate action has been given a platform as it is the 13th goal of the 17 United Nations Sustainable developmen-tal goals (SDG). This review seeks to understand the factors causing climate change, followed by understanding the impact it has on individual and population health. We also identify the strategies to control and prevent further cli-mate change. Methods: Reviews of local and international articles from the past ten years was conducted. The focus of the review was the causes, health effects as well as strategies. Data base used was Pro Quest. Results: This re-view identified that the main contributor to climate change are man-made activities such as fossil fuels combustion, livestock farming, and deforestation. This change in climate has many repercussions from mass migrations, increase communicable diseases as well as an increase in extreme weather events and natural disasters. All this eventually leads to the deterioration of individual and population health. Strengthening adaptivity to climate-related hazard, climate change integration into national policies, education, awareness-raising, impact reduction and early warning are actions that are present in Malaysia to manage this crisis. Conclusion: Climate change is occurring globally, and its presence can no longer be denied. Actions have been put forth, but only when its importance and impact is taken seriously will the positive changes be sustainable.
    Matched MeSH terms: Climate Change
  14. Lim YK, Keng FS, Phang SM, Sturges WT, Malin G, Abd Rahman N
    PeerJ, 2019;7:e6758.
    PMID: 31041152 DOI: 10.7717/peerj.6758
    Marine algae have been reported as important sources of biogenic volatile halocarbons that are emitted into the atmosphere. These compounds are linked to destruction of the ozone layer, thus contributing to climate change. There may be mutual interactions between the halocarbon emission and the environment. In this study, the effect of irradiance on the emission of halocarbons from selected microalgae was investigated. Using controlled laboratory experiments, three tropical marine microalgae cultures, Synechococcus sp. UMACC 371 (cyanophyte), Parachlorella sp. UMACC 245 (chlorophyte) and Amphora sp. UMACC 370 (diatom) were exposed to irradiance of 0, 40 and 120 µmol photons m-2s-1. Stress in the microalgal cultures was indicated by the photosynthetic performance (Fv/Fm, maximum quantum yield). An increase in halocarbon emissions was observed at 120 µmol photons m-2s-1, together with a decrease in Fv/Fm. This was most evident in the release of CH3I by Amphora sp. Synechococcus sp. was observed to be the most affected by irradiance as shown by the increase in emissions of most halocarbons except for CHBr3 and CHBr2Cl. High positive correlation between Fv/Fm and halocarbon emission rates was observed in Synechococcus sp. for CH2Br2. No clear trends in correlation could be observed for the other halocarbons in the other two microalgal species. This suggests that other mechanisms like mitochondria respiration may contribute to halocarbon production, in addition to photosynthetic performance.
    Matched MeSH terms: Climate Change
  15. Sharif Nia H, Chan YH, Froelicher ES, Pahlevan Sharif S, Yaghoobzadeh A, Jafari A, et al.
    Health Promot Perspect, 2019;9(2):123-130.
    PMID: 31249799 DOI: 10.15171/hpp.2019.17
    Background: Meteorological parameters and seasonal changes can play an important role in the occurrence of acute coronary syndrome (ACS). However, there is almost no evidence on a national level to suggest the associations between these variables and ACS in Iran. We aim to identify the meteorological parameters and seasonal changes in relationship to ACS. Methods: This retrospective cross-sectional study was conducted between 03/19/2015 to 03/18/2016 and used documents and records of patients with ACS in Mazandaran ProvinceHeart Center, Iran. The following definitive diagnostic criteria for ACS were used: (1) existence of cardiac enzymes (CK or CK-MB) above the normal range; (2) Greater than 1 mm ST-segment elevation or depression; (3) abnormal Q waves; and (4) manifestation of troponin enzyme in the blood. Data were collected daily, such as temperature (Celsius) changes, wind speed and its direction, rainfall, daily evaporation rate; number of sunny days, and relative humidity were provided by the Meteorological Organization of Iran. Results: A sample of 2,054 patients with ACS were recruited. The results indicated the highest ACS events from March to May. Generally, wind speed (18 PM) [IRR = 1.051 (95% CI: 1.019 to1.083), P=0.001], daily evaporation [IRR = 1.039 (95% CI: 1.003 to 1.077), P=0.032], daily maximum (P<0.001) and minimum (P=0.003) relative humidity was positively correlated withACS events. Also, negatively correlated variables were daily relative humidity (18 PM) [IRR =0.985 (95% CI: 0.978 to 0.992), P<0.001], and daily minimum temperature [IRR = 0.942 (95%CI: 0.927 to 0.958), P<0.001]. Conclusion: Climate changes were found to be significantly associated with ACS; especially from cold weather to hot weather in March, April and May. Further research is needed to fully understand the specific conditions and cold exposures.
    Matched MeSH terms: Climate Change
  16. Shaffril HAM, Krauss SE, Samsuddin SF
    Sci Total Environ, 2018 Dec 10;644:683-695.
    PMID: 29990916 DOI: 10.1016/j.scitotenv.2018.06.349
    Climate change in Asia is affecting farmers' daily routines. Much of the focus surrounding climate change has targeted the economic and environmental repercussions on farming. Few systematic reviews have been carried out on the social impacts of climate change among farmers in Asia. The present article set out to analyse the existing literature on Asian farmers' adaptation practices towards the impacts of climate change. Guided by the PRISMA Statement (Preferred Reporting Items for Systematic reviews and Meta-Analyses) review method, a systematic review of the Scopus and Web of Science databases identified 38 related studies. Further review of these articles resulted in six main themes - crop management, irrigation and water management, farm management, financial management, physical infrastructure management and social activities. These six themes further produced a total of 35 sub-themes. Several recommendations are highlighted related to conducting more qualitative studies, to have specific and a standard systematic review method for guide research synthesis in context of climate change adaptation and to practice complimentary searching techniques such as citation tracking, reference searching, snowballing and contacting experts.
    Matched MeSH terms: Climate Change*
  17. Ab Lah R, Kelaher BP, Bucher D, Benkendorff K
    Mar Environ Res, 2018 Oct;141:100-108.
    PMID: 30119918 DOI: 10.1016/j.marenvres.2018.08.009
    Rising levels of atmospheric carbon dioxide are driving ocean warming and acidification. This could cause stress resulting in decreases in nutritional quality of marine species for human consumption, if environmental changes go beyond the optimal range for harvested species. To evaluate this, we used ambient and near-future elevated temperatures and pCO2 to assess impacts on the proximate nutritional composition (moisture, ash, protein, and lipids), fatty acids and trace elements of the foot tissue of Turbo militaris, a commercially harvested marine snail from south-eastern Australia. In a fully orthogonal design, the snails were exposed to ambient seawater conditions (22 ± 0.2 °C, pH 8.13 ± 0.01-450 μatm pCO2), ocean warming (25 ± 0.05 °C), pCO2 ocean acidification (pH 7.85 ± 0.02, ∼880 μatm pCO2) or a combination of both in controlled flow-through seawater mesocosms for 38 days. Moisture, ash, protein and total lipid content of the foot tissue in the turban snails was unaffected by ocean warming or acidification. However, ocean warming caused a reduction in healthful polyunsaturated fatty acids (PUFA) relative to saturated fatty acids (SFA). Under future warming and acidification conditions, there was a significant 3-5% decrease in n-3 fatty acids, which contributed to a decrease in the n-3/n-6 fatty acid ratio. The decrease in n-3 PUFAs, particularly Eicopentanoic acid (EPA), is a major negative outcome from ocean warming, because higher n-3/n-6 ratios in seafood are desirable for human health. Furthermore, ocean warming was found to increase levels of zinc in the tissues. Calcium, iron, macroelements, microelements and the composition of toxic elements did not appear to be affected by ocean climate change. Overall, the major impact from ocean climate change on seafood quality is likely to be a decrease in healthy polyunsaturated fatty acids at higher temperatures.
    Matched MeSH terms: Climate Change*
  18. Gallardo B, Bogan AE, Harun S, Jainih L, Lopes-Lima M, Pizarro M, et al.
    Sci Total Environ, 2018 Sep 01;635:750-760.
    PMID: 29680765 DOI: 10.1016/j.scitotenv.2018.04.056
    Deforestation, climate change and invasive species constitute three global threats to biodiversity that act synergistically. However, drivers and rates of loss of freshwater biodiversity now and in the future are poorly understood. Here we focus on the potential impacts of global change on freshwater mussels (Order Unionida) in Sundaland (SE Asia), a vulnerable group facing global declines and recognized indicators of overall freshwater biodiversity. We used an ensemble of distribution models to identify habitats potentially suitable for freshwater mussels and their change under a range of climate, deforestation and invasion scenarios. Our data and models revealed that, at present, Sundaland features 47 and 32 Mha of habitat that can be considered environmentally suitable for native and invasive freshwater mussels, respectively. We anticipate that by 2050, the area suitable for palm oil cultivation may expand between 8 and 44 Mha, representing an annual increase of 2-11%. This is expected to result in a 20% decrease in suitable habitat for native mussels, a drop that reaches 30% by 2050 when considering concomitant climate change. In contrast, the habitat potentially suitable for invasive mussels may increase by 44-56% under 2050 future scenarios. Consequently, native mussels may compete for habitat, food resources and fish hosts with invasive mussels across approximately 60% of their suitable range. Our projections can be used to guide future expeditions to monitor the conservation status of freshwater biodiversity, and potentially reveal populations of endemic species on the brink of extinction. Future conservation measures-most importantly the designation of nature reserves-should take into account trends in freshwater biodiversity generally, and particularly species such as freshwater mussels, vital to safeguard fundamental ecosystem services.
    Matched MeSH terms: Climate Change
  19. Alam T, Islam MT, Ullah MA, Cho M
    Sensors (Basel), 2018 Jul 31;18(8).
    PMID: 30065233 DOI: 10.3390/s18082480
    One of the most efficient methods to observe the impact of geographical, environmental, and geological changes is remote sensing. Nowadays, nanosatellites are being used to observe climate change using remote sensing technology. Communication between a remote sensing nanosatellite and Earth significantly depends upon antenna systems. Body-mounted solar panels are the main source of satellite operating power unless deployable solar panels are used. Lower ultra-high frequency (UHF) nanosatellite antenna design is a crucial challenge due to the physical size constraint and the need for solar panel integration. Moreover, nanosatellite space missions are vulnerable because of antenna and solar panel deployment complexity. This paper proposes a solar panel-integrated modified planner inverted F antenna (PIFA) to mitigate these crucial limitations. The antenna consists of a slotted rectangular radiating patch with coaxial probe feeding and a rectangular ground plane. The proposed antenna has achieved a -10 dB impedance bandwidth of 6.0 MHz (447.5 MHz⁻453.5 MHz) with a small-sized (80 mm× 90 mm× 0.5 mm) radiating element. In addition, the antenna achieved a maximum realized gain of 0.6 dB and a total efficiency of 67.45% with the nanosatellite structure and a solar panel. The challenges addressed by the proposed antenna are to ensure solar panel placement between the radiating element and the ground plane, and provide approximately 55% open space to allow solar irradiance into the solar panel.
    Matched MeSH terms: Climate Change
  20. Sheikhy Narany T, Sefie A, Aris AZ
    Sci Total Environ, 2018 Jul 15;630:931-942.
    PMID: 29499548 DOI: 10.1016/j.scitotenv.2018.02.190
    In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments.
    Matched MeSH terms: Climate Change
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links