Displaying publications 161 - 180 of 314 in total

Abstract:
Sort:
  1. Boukari Y, Scurr DJ, Qutachi O, Morris AP, Doughty SW, Rahman CV, et al.
    J Biomater Sci Polym Ed, 2015;26(12):796-811.
    PMID: 26065672 DOI: 10.1080/09205063.2015.1058696
    An injectable poly(DL-lactic-co-glycolic acid) (PLGA) system comprising both porous and protein-loaded microspheres capable of forming porous scaffolds at body temperature was developed for tissue regeneration purposes. Porous and non-porous (lysozyme loaded) PLGA microspheres were formulated to represent 'low molecular weight' 22-34 kDa, 'intermediate molecular weight' (IMW) 53 kDa and 'high molecular weight' 84-109 kDa PLGA microspheres. The respective average size of the microspheres was directly related to the polymer molecular weight. An initial burst release of lysozyme was observed from both microspheres and scaffolds on day 1. In the case of the lysozyme-loaded microspheres, this burst release was inversely related to the polymer molecular weight. Similarly, scaffolds loaded with 1 mg lysozyme/g of scaffold exhibited an inverse release relationship with polymer molecular weight. The burst release was highest amongst IMW scaffolds loaded with 2 and 3 mg/g. Sustained lysozyme release was observed after day 1 over 50 days (microspheres) and 30 days (scaffolds). The compressive strengths of the scaffolds were found to be inversely proportional to PLGA molecular weight at each lysozyme loading. Surface analysis indicated that some of the loaded lysozyme was distributed on the surfaces of the microspheres and thus responsible for the burst release observed. Overall the data demonstrates the potential of the scaffolds for use in tissue regeneration.
    Matched MeSH terms: Molecular Weight
  2. Salih AM, Ahmad MB, Ibrahim NA, Dahlan KZ, Tajau R, Mahmood MH, et al.
    Molecules, 2015;20(8):14191-211.
    PMID: 26248072 DOI: 10.3390/molecules200814191
    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
    Matched MeSH terms: Molecular Weight
  3. Gobi K, Vadivelu VM
    Bioresour Technol, 2015;189:169-176.
    PMID: 25889804 DOI: 10.1016/j.biortech.2015.04.023
    Polyhydroxyalkanoate (PHA) recovery from aerobic granules was investigated using four cell digestion agents, namely, sodium hypochlorite, sodium hydroxide, acetone and sodium chloride. Simultaneously, the removal of extracellular polymeric substances (EPS) and its effect on PHA yield were investigated. The highest PHA recovery yield was obtained using sodium hypochlorite, accounting for 89% cell dry weight (CDW). The highest PHA was recovered after the sodium hypochlorite completely removed the EPS from the aerobic granules. The average molecular weight (Mw) of the PHA recovered using sodium hypochlorite was 5.31 × 10(5)g/mol with only 1.8% molecular weight degradation. The energy and duration analysis for PHA recovery revealed that the sodium hypochlorite method required the least amount of energy and time at 0.0561 MJ/g PHA and 26 h, respectively. The PHA that was recovered was a P3(HB-co-HV) co-polymer.
    Matched MeSH terms: Molecular Weight
  4. Nurul Izzah, A.R., Zailatul Hani, M.Y., Noormalin, A., Faizal, B., Shahnaz, M., Rosmilah, M.
    Medicine & Health, 2015;10(2):90-97.
    MyJurnal
    Crab meat is a valuable source of proteins and functional lipids and it is widely consumed worldwide. However, the prevalence of crab allergy has increased over the past few years. In order to understand crab allergy better, it is necessary to identify crab allergens. The aim of the present study was to compare the IgE-binding proteins of raw and cooked extracts of mud crab (Scylla serrata). Raw and cooked extracts of the mud crab were prepared. Protein profiles and IgE reactivity patterns were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting using sera from 21 skin prick test (SPT) positive patients. In SDS-PAGE, 20 protein bands (12 to 250 kDa) were observed in the raw extract while the cooked extract demonstrated fewer bands. Protein bands between 40 to 250 kDa were sensitive to heat denaturation and no longer observed in the cooked extract. In immunoblotting experiments, raw and cooked extracts demonstrated 11 and 4 IgE-binding proteins, respectively, with molecular weights of between 23 and 250 kDa. A heat-resistant 36 kDa protein, corresponding to crab tropomyosin was identified as the major allergen of both extracts. In addition, a 41 kDa heat-sensitive protein believed to be arginine kinase was shown to be a major allergen of the raw extract. Other minor allergens were also observed at various molecular weights.
    Matched MeSH terms: Molecular Weight
  5. Normah, I., Nur Anati, J.
    MyJurnal
    Threadfin bream (Nemipterus japonicas) muscle was hydrolysed using protease extracted from
    bilimbi (Averrhoa bilimbi L.) fruit. This study was performed in order to compare the efficiency of bilimbi protease in producing threadfin bream protein hydrolysate with the commercial protease; alcalase 2.4 L. Initially, protease was extracted and then purified using 40% ammonium sulfate precipitation method. The proteolytic activity of the crude extract and purified protease was determined. Precipitation using 40% ammonium sulfate resulted in bilimbi protease specific activity of 2.36 U/mg and 23.13% recovery. Threadfin bream hydrolysate was prepared based on the pH-stat method by hydrolysis for 2 hrs. Hydrolysis using bilimbi protease produced 34.76% degree of hydrolysis (DH) and 3.75% yield while hydrolysis using alcalase resulted in 86.6% DH with 22.78% yield. Alcalase hydrolysate showed higher solubility than bilimbi protease hydrolysate at pH 7 with 70.87 and 32.16% solubility, respectively. Results also showed that protein content of threadfin bream hydrolysate produced using alcalase was higher (86.86%) than those produced using bilimbi protease (22.12%). However, both hydrolysates showed low moisture content between 3.93 to 7.00%. The molecular weight distribution analysis using SDS–PAGE indicated the distribution of smaller peptides especially in alcalase hydrolysate. Overall, the results showed that alcalase is more efficient enzyme choice than bilimbi protease for preparing threadfin bream hydrolysates. However, both hydrolysates could play an important role thus contribute to the food industry.
    Matched MeSH terms: Molecular Weight
  6. Ismail, N.A, Noranizan, M.A., Shamsudin, R., Karim, R
    MyJurnal
    Cassava chips that exist in the current market have no standardisation and cannot be stacked
    nicely into cylindrical container. The objectives of this work are to determine the different dimension of cassava chips produced with different thickness and to develop stackable chips during mass production. Fresh cassava tubers were harvested, washed, peeled and sliced. The thickness measurements used were 1.0 mm, 1.5 mm, 1.75 mm and 2.0 mm and 1.27 mm thickness was measured from commercial potato chips as a controlled sample. Then, it was fried in deep fat fryer with the temperature of 170°C. For each thickness studied, different
    numbers of slice (10, 20, 30 and 40 slices) were fried simultaneously. Results showed that there
    are 6 shapes of fried chips produced during the frying. To conclude, thickness of the slice and
    number of slices fried simultaneously give impact towards the shape of fried chip.
    Matched MeSH terms: Molecular Weight
  7. Razali, A.N., Amin, A.M., Sarbon, N.M.
    MyJurnal
    This study investigated the antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate (CSGH) at different molecular weights (10, 5 and 3 kDa). Antioxidant activities studied included reducing power, ferrous ion chelation, DPPH (1, 1- diphenyl-2- picrylhydrazyl) radical scavenging, and superoxide anion scavenging. Functional properties studied included emulsifying and foaming properties as well as fat and water binding capacity. Results showed significant differences (p
    Matched MeSH terms: Molecular Weight
  8. Leman, A.M., Fakhrurrazi Rahman, Dafit Feriyanto
    MyJurnal
    The simulation of the catalytic converter system is quite needed in order to characterize the catalyst and also
    optimizing the monolithic design for the gas emission in the catalytic converter and other related mechanism. The
    objective of this study is to obtain quantitative description of the gas emission in the catalytic converter system of
    natural powered automobile exhaust gas using ANSYS Software. This work will present a finite element calculation
    to predict and evaluate the mass transfer, energy balance and velocity of gas emission in the catalytic converter. The
    expected result for this research is to evaluate data of the gas emission obtained from the software to be compared with
    the manual experiment in order to verify the effectiveness of modified catalytic converter.
    Matched MeSH terms: Molecular Weight
  9. Yuan Y, Wang YB, Jiang Y, Prasad KN, Yang J, Qu H, et al.
    Int J Biol Macromol, 2016 Jan;82:696-701.
    PMID: 26505952 DOI: 10.1016/j.ijbiomac.2015.10.069
    The water-soluble bioactive polysaccharides can contribute to the health benefits of Lycium barbarium fruit. However, the structure characteristics of these polysaccharides remain unclear yet. An important polysaccharide (LBPA) was isolated and purified from L. barbarium in this work. It was identified by chemical and spectroscopic methods as arabinogalactan with β-d-(1→6)-galactan as backbone, which was different to any reported polysaccharides from this species before. This arabinogalactan was comprised of Araf, Galp, GlcpA and Rhap with a molar ratio of 9.2:6.6:1.0:0.9. The side chains, including α-l-Araf-(1→, α-l-Araf-(1→5)-α-l-Araf-(1→, β-l-Araf-(1→5)-α-l-Araf-(1→ and α-l-Rhap-(1→4)-β-d-GlcpA-(1→6)-β-d-Galp-(1→, were linked to β-d-(1→6)-galactan at O-3. The putative structure was drawn as below. The molecular weight was determined to be 470,000g/mol by gel permeation chromatography.
    Matched MeSH terms: Molecular Weight
  10. Huang D, Li Y, Cui F, Chen J, Sun J
    Carbohydr Polym, 2016 Feb 10;137:701-708.
    PMID: 26686182 DOI: 10.1016/j.carbpol.2015.10.102
    A novel polysaccharide-peptide complex CNP-1-2 with molecular weight of 9.17 × 10(4) Da was obtained from Clinacanthus nutans Lindau leaves by hot water extraction, ethanol precipitation, and purification with Superdex 200 and DEAE-Sepharose Fast Flow column chromatography. CNP-1-2 exhibited the highest growth inhibitory effect on human gastric cancer cells SGC-7901 with inhibition ratio of 92.34% and stimulated activation of macrophages with NO secretion level of 47.53 μmol/L among the polysaccharide fractions. CNP-1-2 comprised approximately 87.25% carbohydrate and 9.37% protein. Monosaccharide analysis suggested that CNP-1-2 was composed of L-rhamnose, l-arabinose, D-mannose, D-glucose and D-galactose with a molar ratio of 1.30:1.00:2.56:4.95:5.09. Methylation analysis, FT-IR, and (1)H NMR spectroscopy analysis revealed that CNP-1-2 might have a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp. Its side chain might be composed of 1-linked Araf, 1,6-linked Galp and 1-linked Rhap residues. AFM (atomic force micrograph) analysis revealed that CNP-1-2 had the molecular aggregation along with branched and entangled structure.
    Matched MeSH terms: Molecular Weight
  11. Huu Phong T, Van Thuoc D, Sudesh K
    Int J Biol Macromol, 2016 Mar;84:361-6.
    PMID: 26708435 DOI: 10.1016/j.ijbiomac.2015.12.037
    A halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis. Only P(3HB) was produced using carbon sources such as fructose or by a combination of fructose with 1,5-pentanediol, 1,6-hexanediol, sodium hexanoate, or sodium octanoate. The biosynthesis of P(3HB-co-3HV) was achieved by adding cosubstrates such as sodium valerate and sodium heptanoate. When 1,4-butanediol, γ-butyrolactone or sodium 4-hydroxybutyrate was added to the culture medium, P(3HB-co-4HB) containing 4.0-7.1mol% 4HB fraction was accumulated. The molecular weights and thermal properties of polyesters were determined by gel permeation chromatography and differential scanning calorimeter, respectively. The results showed that Yangia sp. ND199 is able to produce polyester with high weight average molecular weight ranging from 1.3×10(6) to 2.2×10(6) Dalton and number average molecular weight ranging from 4.2×10(5) to 6.9×10(5) Dalton. The molecular weights, glass transition temperature as well as melting temperature of homopolymer P(3HB) are higher than those of copolymer P(3HB-co-3HV) or P(3HB-co-4HB).
    Matched MeSH terms: Molecular Weight
  12. Tan HF, Gan CY
    Int J Biol Macromol, 2016 Apr;85:487-96.
    PMID: 26778156 DOI: 10.1016/j.ijbiomac.2016.01.023
    Functional polysaccharide was isolated from Momordica charantia, with a yield of 36% (w/w). M. charantia bioactive polysaccharide (MCBP) was an acidic and branched heteropolysaccharide with a molecular weight of 92 kDa. Fourier transform infrared spectroscopic analysis indicated that MCBP was a pectin-like polysaccharide with an esterification degree of 53% and it contains numerous monosaccharides, predominantly glucose, galactose, and galaturonic acid. The results also showed that MCBP exhibited free radical scavenging activity (31.9%), ferric reducing antioxidant power (0.95 mM), α-amylase inhibition (89.1%), and angiotensin-converting enzyme inhibition (94.1%). In the terms of functionality, MCBP showed a lower water-holding capacity but higher in oil-holding capacity, emulsifying activity and foaming capacity compared to citrus pectin. Scanning electron microscopy images demonstrated that MCBP formed gels with a porous structure, and flow analysis showed that the gel solution exhibited pseudoplastic shear-thinning behavior. These findings indicated that MCBP is a promising functional macromolecular carbohydrate for the food and nutraceutical industries.
    Matched MeSH terms: Molecular Weight
  13. Asep EK, Jinap S, Russly AR, Jahurul MH, Ghafoor K, Zaidul IS
    J Food Sci Technol, 2016 May;53(5):2287-97.
    PMID: 27407195 DOI: 10.1007/s13197-016-2191-2
    The effects of flow rate, different pressures and temperatures on cocoa butter extracted from cocoa nib using supercritical carbon dioxide (scCO2) were investigated. The yield was analyzed for total fat content, triacylglycerol (TG) profile, and fatty acid (FA) profile. Extractions were carried out at pressures of 20 and 35 MPa, temperatures of 50 and 60 °C, and CO2 flow rates of 0.5, 1, 2, 4 mL min(-1). The result shows that the yield of cocoa butter extract increased with increasing pressure, temperature, and flow rate and the optimum conditions for the maximum cocoa butter extraction were 35 MPa, 60 °C and 2 mL min(-1), repectively. TGs and FAs were found to be similar in composition to those of cocoa butter obtained by conventional methods. The lower molecular weight TGs and FAs showed higher selectivity compared to higher molecular weight TGs and FAs.
    Matched MeSH terms: Molecular Weight
  14. Hussain I, Syed JH, Kamal A, Iqbal M, Eqani SA, Bong CW, et al.
    Environ Monit Assess, 2016 Jun;188(6):378.
    PMID: 27234513 DOI: 10.1007/s10661-016-5359-3
    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
    Matched MeSH terms: Molecular Weight
  15. Chachuli SH, Nawaz A, Shah K, Naharudin I, Wong TW
    Pharm Res, 2016 06;33(6):1497-508.
    PMID: 26951565 DOI: 10.1007/s11095-016-1893-5
    PURPOSE: Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages.

    METHODS: Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques.

    RESULTS: The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary.

    CONCLUSION: Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

    Matched MeSH terms: Molecular Weight
  16. Nawaz A, Wong TW
    J Microsc, 2016 07;263(1):34-42.
    PMID: 26695532 DOI: 10.1111/jmi.12371
    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery.
    Matched MeSH terms: Molecular Weight
  17. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
    Matched MeSH terms: Molecular Weight
  18. Liew NC, Lee L
    World J Surg, 2016 07;40(7):1788-9.
    PMID: 26464151 DOI: 10.1007/s00268-015-3273-4
    Matched MeSH terms: Heparin, Low-Molecular-Weight/therapeutic use
  19. Khan S, Zakariah M, Palaniappan S
    Tumour Biol., 2016 Aug;37(8):10805-13.
    PMID: 26874727 DOI: 10.1007/s13277-016-4970-9
    Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.
    Matched MeSH terms: Molecular Weight
  20. Rajagopalu D, Show PL, Tan YS, Muniandy S, Sabaratnam V, Ling TC
    J Biosci Bioeng, 2016 Sep;122(3):301-6.
    PMID: 26922478 DOI: 10.1016/j.jbiosc.2016.01.016
    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
    Matched MeSH terms: Molecular Weight
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links