Displaying publications 161 - 180 of 488 in total

Abstract:
Sort:
  1. Mutlag A, Md. Jashim Uddin, Ahmad Izani Md. Ismail
    Sains Malaysiana, 2014;43:1249-1257.
    We study and discuss the effect of thermal slip on steady free convection flow of a viscous, incompressible micropolar fluid past a vertical moving plate in a saturated porous medium. The effect of viscous dissipation is incorporated in the energy equation. The associated partial differential equations are transformed into a system of ordinary differential equations using similarity transformations generated by a group method and this system is then solved numerically. The effect of controlling parameters on the dimensionless velocity, angular velocity and temperature as well as friction factor, couple stress factor and heat transfer rate are shown graphically and discussed in detail. It is found that the dimensional velocity and angular velocity decrease whilst the temperature increases with velocity slip parameter. It is further found that thermal slip decreases the dimensional velocity and temperature but increases the dimensional angular velocity. Data from published work and our results are found to be in good agreement.
    Matched MeSH terms: Physical Phenomena
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Jan 18;122(2):021801.
    PMID: 30720313 DOI: 10.1103/PhysRevLett.122.021801
    A search for the Higgs boson decaying to two oppositely charged muons is presented using data recorded by the CMS experiment at the CERN LHC in 2016 at a center-of-mass energy sqrt[s]=13  TeV, corresponding to an integrated luminosity of 35.9  fb^{-1}. Data are found to be compatible with the predicted background. For a Higgs boson with a mass of 125.09 GeV, the 95% confidence level observed (background-only expected) upper limit on the production cross section times the branching fraction to a pair of muons is found to be 3.0 (2.5) times the standard model expectation. In combination with data recorded at center-of-mass energies sqrt[s]=7 and 8 TeV, the background-only expected upper limit improves to 2.2 times the standard model value with a standard model expected significance of 1.0 standard deviation. The corresponding observed upper limit is 2.9 with an observed significance of 0.9 standard deviation. This corresponds to an observed upper limit on the standard model Higgs boson branching fraction to muons of 6.4×10^{-4} and to an observed signal strength of 1.0±1.0(stat)±0.1(syst).
    Matched MeSH terms: Physical Phenomena
  3. Horiguchi T, Masui Y, Zan MSD
    Sensors (Basel), 2019 Mar 27;19(7).
    PMID: 30934806 DOI: 10.3390/s19071497
    Distributed strain and temperature can be measured by using local Brillouin backscatter in optical fibers based on the strain and temperature dependence of the Brillouin frequency shift. The technique of analyzing the local Brillion backscatter in the time domain is called Brillouin optical time domain reflectometry (BOTDR). Although the best spatial resolution of classic BOTDR remains at around 1 m, some recent BOTDR techniques have attained as high as cm-scale spatial resolution. Our laboratory has proposed and demonstrated a high-spatial-resolution BOTDR called phase-shift pulse BOTDR (PSP-BOTDR), using a pair of probe pulses modulated with binary phase-shift keying. PSP-BOTDR is based on the cross-correlation of Brillouin backscatter and on the subtraction of cross-correlations obtained from the Brillouin scatterings evoked by each phase-modulated probe pulse. Although PSP-BOTDR has attained 20-cm spatial resolution, the spectral analysis method of PSP-BOTDR has not been discussed in detail. This article gives in-depth analysis of the Brillouin backscatter and the correlations of the backscatters of the PSP-BOTDR. Based on the analysis, we propose new spectral analysis methods for PSP-BOTDR. The analysis and experiments show that the proposed methods give better frequency resolution than before.
    Matched MeSH terms: Physical Phenomena
  4. Tran HN, Pham VV, Vo DN, Nguyen-Tri P
    Chemosphere, 2019 Oct;233:988-990.
    PMID: 30853115 DOI: 10.1016/j.chemosphere.2019.02.084
    This article aims to discuss (1) the incorrect identification of Cr(III) and Cr(VI) binding energies in the Cr 2p XPS (X-ray photoelectron spectroscopy) spectra of the laden adsorbent (the nZVI-BC sample after Cr(VI) adsorption), (2) misconception regarding the Weber-Morris intraparticle diffusion model, and (3) inconsistency between the experiential data and the Thomas adsorption rate constants. The authors hope that our comments are beneficial for other researchers to avoid the undesirable mistakes.
    Matched MeSH terms: Physical Phenomena; Biophysical Phenomena
  5. Athirah Othman, Johan Sohaili, Nur Sumaiyyah Supian
    MyJurnal
    This review is aimed to present an in-depth review of several methodologies on magnetic
    water treatment (MWT) that are employed as scale treatment in water pipeline and to
    critically discuss each method in order to determine the best outcome of MWT. The
    magnetically assisted water in pipeline in various applications are presented, argued and
    best variables are listed according to the performance of each MWT. The advantages and
    limitations of MWT are discussed and the main outcome from the review summarize the
    best method in MWT, especially in effectiveness of treating scale in terms of sustained
    environment benefits. Magnetic field application in water treatment has the potential to
    improve the water pipeline performance and lifetime. The application is also significant in
    controlling the growth of scale in upcoming system. Both of these benefits lead to healthier
    water treatment, increasing and maintaining the lifetime and performance of water system.
    Matched MeSH terms: Physical Phenomena
  6. Yidris N, Isham NH, Gires E, Mutafi A
    Materials (Basel), 2020 Mar 21;13(6).
    PMID: 32245266 DOI: 10.3390/ma13061441
    The compressive behaviour of column members can be considerably affected by local buckling, material yielding and local end conditions. In this paper, the effects of the loading conditions at the ends of plain channel section columns subjected to uniformly compressed loading, and fixed conditions at the column ends with respect to global rotations, was examined. Finite element simulation was employed to look at the post-buckled response of thin-walled, plain channel section columns that covered the complete loading history of the compression columns from the onset of elastic local buckling through the nonlinear elastic and elastoplastic post-buckling phases of behaviour to final collapse and unloading. Two types of loading conditions were considered: the first was one that has been used practically in tests whereby one end is loaded with a moving top platen while the other end is fixed at the lower platen, but, for the second loading condition, both ends were loaded with equally moving top and lower platens. These two conditions were shown to lead to quite different characteristic interactive responses of the columns due to mode jumping in the buckling mode for the locally rotationally constrained case.
    Matched MeSH terms: Physical Phenomena
  7. Mohammad Sarwan Mohd Sanif, Amgad Ahmed Ali, Lee MW, Lee HW, Chia Sheng DB, Abdul Manaf Hashim
    Sains Malaysiana, 2017;46:1119-1924.
    The effects of the annealing temperatures and thicknesses on the shapes, sizes and arrangement of platinum (Pt) nanoparticles (NPs) on graphene and their sensing performance for hydrogen (H2) detection were investigated. It shows strong dependency of the annealing temperatures and thicknesses on the properties of NPs. It was found that the proposed technique is able to form the NPs with good size controllability and uniformity even for thick deposited layer, thus eliminating the requirement of very thin layer of below 5 nm for the direct NP synthesis by evaporation or sputtering. The transport properties of Pt NPs/graphene structure and its sensing performance on H2 at room temperature under various H2 concentration were evaluated. The results showed an acceptable sensing response, indicating an innovative approach to fabricate Pt NPs embedded graphene for gas sensing application.
    Matched MeSH terms: Physical Phenomena
  8. Suping Peng, Wenfeng Du, Xiaoming Tang, Zeng Hu, Yunlan He
    Sains Malaysiana, 2017;46:2187-2193.
    In order to understand the characteristics of acoustic wave propagation in rocks within seismic frequency band (<100
    Hz), the velocities of longitudinal and transverse waves of four different types of rocks were tested using low-frequency
    stress-strain method by means of the physical testing system of rock at low frequency and the experimental data of acoustic
    velocities of four different types of rocks at this frequency band were obtained. The experimental results showed that the
    acoustic velocities of four different types of rocks increased with the increase of temperature and pressure within the
    temperature and pressure ranges set by the experiment. The acoustic velocity of fine sandstone at 50% water saturation
    was smaller than that of dry sample. The acoustic velocities of four different types of rocks were different and the velocities
    of longitudinal waves of gritstone, fine sandstone, argillaceous siltstone and mudstone increased in turn under similar
    conditions and were smaller than those at ultrasonic frequency. Few of existing studies focus on the acoustic velocity at
    seismic frequency band, thus, further understanding of the acoustic characteristics at this seismic frequency band still
    requires more experimental data.
    Matched MeSH terms: Physical Phenomena
  9. Ying Wang, Yonghui Chen, Zhenhua Hu, Qiang Feng, Desen Kong
    Sains Malaysiana, 2017;46:2231-2239.
    Ground improvement using artificial crust composite foundation, consisting of stabilization of soft clay and composite foundation, is an effective technique for the treatment of deep soft soil layers under infrastructure embankments. In this study, the load responses and settlement performance of this improvement technique were investigated using two centrifuge model tests to compare the variations of the vertical deformation, pore water pressure, axial force of the piles and tensile stress at the bottom of the artificial crust in the crust composite foundation with those in pile-supported embankment. The results of centrifuge model tests showed that the load responses and settlement performance of artificial crust composite foundation was different from the pile-supported embankment, which displayed mainly that the final middle settlement of crust composite foundation can be reduced by about 15% compared with those of pile-supported embankment with the same length of pile and construction cost. The deformation of the crust with the characteristics of the plate was found based on the change of the tensile stress. Additionally, the excess pore water pressure in the crust composite foundation was lower owing to the stress diffusion effect of the crust during the loading period and the dissipation rate of excess pore water pressure was slower due to lower permeability of the crust at the same loading period. Eventually, the axial force of the middle piles was reduced. At the same time, the boundary stress was functioned with the crust, the axial force of the side piles was improved. The comparison of measured and calculated results was carried out using the stress reduction ratio, the result shows that the bearing capacity of the subsoil in the crust composite was improved.
    Matched MeSH terms: Physical Phenomena
  10. Yanliang Shang, Shouji Du, Biao Shao, Tongyin Han
    Sains Malaysiana, 2017;46:2091-2099.
    A large number of shallow buried tunnels are built in the city nowadays and the special strata such as large upper-soft and lower-hard ground often encountered. Deformation control of strata is the focus issue related to the construction safety. Based on Dalian metro Hing Street station with the classical geological condition of upper-soft and lower-hard ground, this paper fully used a combined control method including six different support measures to control the deformation of surrounding rock. 3D finite element model was setup to analyze the construction effect of combined control measures and the monitoring in-site was carried out to verify the deformation control effect of combined control method. It shows that the maximum surface subsidence value is gradually reduced with the support measures gradually increasing. In the case of various supports the maximum sedimentation value is 2.67 cm, which is 42. 1% lower than that of not using control method and the control effect is obvious. In addition, it can be seen that the two-layer initial support and additional large arch foot have the best effect on controlling the ground surface settlement with reduction of 11.7% and 20.2%, respectively. The research results can provide practical experience for the construction of such tunnels, and guide the design and construction of the tunnel in the future.
    Matched MeSH terms: Physical Phenomena
  11. Rahimian Koloor SS, Karimzadeh A, Yidris N, Petrů M, Ayatollahi MR, Tamin MN
    Polymers (Basel), 2020 Jan 07;12(1).
    PMID: 31936184 DOI: 10.3390/polym12010157
    Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE). Such a characteristic evolution curve is computed using a validated finite element model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber failure modes in angle lamina. The yield point of composite structures is identified to correspond to a 5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric MD FRP composite structures under flexural loading conditions are established based on Hashin unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria, in which the accumulation of energy dissipated due to all damage modes is less than 5% of the fracture energy required for the structural rupture.
    Matched MeSH terms: Physical Phenomena
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
    Matched MeSH terms: Physical Phenomena
  13. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(12):845.
    PMID: 31985736 DOI: 10.1140/epjc/s10052-017-5317-4
    A search is presented for an excess of events with heavy-flavor quark pairs (

    t

    t
    ¯


    and

    b

    b
    ¯


    ) and a large imbalance in transverse momentum in data from proton-proton collisions at a center-of-mass energy of 13


    TeV

    . The data correspond to an integrated luminosity of 2.2



    fb

    -
    1



    collected with the CMS detector at the CERN LHC. No deviations are observed with respect to standard model predictions. The results are used in the first interpretation of dark matter production in

    t

    t
    ¯


    and

    b

    b
    ¯


    final states in a simplified model. This analysis is also the first to perform a statistical combination of searches for dark matter produced with different heavy-flavor final states. The combination provides exclusions that are stronger than those achieved with individual heavy-flavor final states.
    Matched MeSH terms: Physical Phenomena
  14. Ong WJ, Putri LK, Mohamed AR
    Chemistry, 2020 Aug 06;26(44):9710-9748.
    PMID: 32511824 DOI: 10.1002/chem.202000708
    Photocatalytic CO2 reduction is a revolutionary approach to solve imminent energy and environmental issues by replicating the ingenuity of nature. The past decade has witnessed an impetus in the rise of two-dimensional (2D) structure materials as advanced nanomaterials to boost photocatalytic activities. In particular, the use of 2D carbon-based materials is deemed as highly favorable, not only as a green material choice, but also due to their exceptional physicochemical and electrical properties. This Review article presents a diverse range of alterations and compositions derived from 2D carbon-based nanomaterials, mainly graphene and graphitic carbon nitride (g-C3 N4 ), which have remarkably ameliorated the photocatalytic CO2 performance. Herein, the rational design of the photocatalyst systems with consideration of the aspect of dimensionality and the resultant heterostructures at the interface are systematically analyzed to elucidate an insightful perspective on this pacey subject. Finally, a conclusion and outlook on the limitations and prospects of the cutting-edge research field are highlighted.
    Matched MeSH terms: Physical Phenomena
  15. Ch'ng SY, Andriyana A, Tee YL, Verron E
    Materials (Basel), 2015 Mar 02;8(3):884-898.
    PMID: 28787977 DOI: 10.3390/ma8030884
    The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material's ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored.
    Matched MeSH terms: Physical Phenomena
  16. Chua SY, Guo N, Tan CS, Wang X
    Sensors (Basel), 2017 Sep 05;17(9).
    PMID: 28872589 DOI: 10.3390/s17092031
    Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works.
    Matched MeSH terms: Physical Phenomena
  17. Torabi Asr, M., Masoumi, M.M., Mustapha, F.
    MyJurnal
    Pre-stressing is a concept used in many engineering structures. In this study prestressing in the form of axial compression stress is proposed in the blade structure of H-Darrieus wind turbine. The study draws a structural comparison between reference and prestressed configurations of turbine rotor with respect to their dynamic vibrational response. Rotordynamics calculations provided by ANSYS Mechanical is used to investigate the effects of turbine rotation on the dynamic response of the system. Rotation speed ranging between 0 to 150 rad/s was examined to cover the whole operating range of commercial instances. The modal analysis ends up with first six mode shapes of both rotor configurations. As a result, the displacement of the proposed configurations reduced effectively. Apparent variations in Campbell diagrams of both cases indicate that prestressed configuration has its resonant frequencies far away from turbine operation speeds and thus remarkably higher safety factor against whirling and probable following failures.
    Matched MeSH terms: Physical Phenomena
  18. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):439.
    PMID: 28303081 DOI: 10.1140/epjc/s10052-016-4261-z
    A search for new physics is performed using events with two isolated same-sign leptons, two or more jets, and missing transverse momentum. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13[Formula: see text] recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 [Formula: see text]. Multiple search regions are defined by classifying events in terms of missing transverse momentum, the scalar sum of jet transverse momenta, the transverse mass associated with a [Formula: see text] boson candidate, the number of jets, the number of [Formula: see text] quark jets, and the transverse momenta of the leptons in the event. The analysis is sensitive to a wide variety of possible signals beyond the standard model. No excess above the standard model background expectation is observed. Constraints are set on various supersymmetric models, with gluinos and bottom squarks excluded for masses up to 1300 and 680[Formula: see text], respectively, at the 95 % confidence level. Upper limits on the cross sections for the production of two top quark-antiquark pairs (119[Formula: see text]) and two same-sign top quarks (1.7[Formula: see text]) are also obtained. Selection efficiencies and model independent limits are provided to allow further interpretations of the results.
    Matched MeSH terms: Physical Phenomena
  19. Hasan MM, Faruque MRI, Islam MT
    Sci Rep, 2018 01 19;8(1):1240.
    PMID: 29352228 DOI: 10.1038/s41598-018-19705-3
    A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
    Matched MeSH terms: Physical Phenomena
  20. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Jul 29;117(5):051802.
    PMID: 27517765 DOI: 10.1103/PhysRevLett.117.051802
    A search for the resonant production of high-mass photon pairs is presented. The analysis is based on samples of proton-proton collision data collected by the CMS experiment at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 3.3  fb^{-1}, respectively. The interpretation of the search results focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4 TeV and with widths, relative to the mass, between 1.4×10^{-4} and 5.6×10^{-2}. Limits are set on scalar resonances produced through gluon-gluon fusion, and on Randall-Sundrum gravitons. A modest excess of events compatible with a narrow resonance with a mass of about 750 GeV is observed. The local significance of the excess is approximately 3.4 standard deviations. The significance is reduced to 1.6 standard deviations once the effect of searching under multiple signal hypotheses is considered. More data are required to determine the origin of this excess.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links