Displaying publications 161 - 180 of 995 in total

Abstract:
Sort:
  1. Chen HL, Gibbins CN, Selvam SB, Ting KN
    Environ Pollut, 2021 Nov 15;289:117895.
    PMID: 34364115 DOI: 10.1016/j.envpol.2021.117895
    Microplastic pollution is widely recognised as a global issue, posing risks to natural ecosystems and human health. The combination of rapid industrial and urban development and relatively limited environmental regulation in many tropical countries may increase the amount of microplastic entering rivers, but basic data on contamination levels are lacking. This is especially the case in tropical South East Asian countries. In this paper, the abundance, composition and spatio-temporal variation of microplastic in the Langat River, Malaysia, were assessed, and the relationship between microplastic concentration and river discharge was investigated. Water samples were collected over a 12-month period from 8 sampling sites on the Langat, extending from forested to heavily urbanised and industrial areas. All 508 water samples collected over this period contained microplastic; mean concentration across all sites and times was 4.39 particles/L but extended up to 90.00 particles/L in some urban tributaries. Most microplastics were secondary in origin, and dominated by fibres. Microplastic counts correlated directly with river discharge, and counts increased and decreased in response to changes in flow. A time-integrated assessment of the microplastic load conveyed by the Langat suggested that the river is typically (50 % of the time) delivering around 5 billion particles per day to the ocean. The positive correlation between the concentration of microplastics and suspended sediments in the Langat suggested that continuously logging turbidity sensors could be used to provide better estimates of microplastic loads and improve assessment of human and ecological health risks.
    Matched MeSH terms: Ecosystem
  2. Sirichantakul K, Hmone ZW, Kyaw ML, Thandar C
    Zootaxa, 2024 Feb 07;5406(3):481-486.
    PMID: 38480137 DOI: 10.11646/zootaxa.5406.3.7
    A curious micropteous gaudy grasshopper (family Pyrgomorphidae), Burmorthacris subaptera was described by Kevan, Singh and Akbar in 1964 as a sole member of its genus based on a female and a male collected in Yenangyaung (upper Myanmar) on 27th and 28th August 1937 and which were deposited at the Academy of Natural Sciences of Philadelphia. The species has never been reported since then. The genus Burmorthacris is the northernmost of the Orthacris genus group genera, which includes mostly genera from Sri Lanka and Malaysia. Recently we rediscovered this B. subaptera in its type locality (Yenangyaung township in the Magway Region) in Myanmar, 85 years after the holotype and the paratype were collected in the same place, and furthermore herewith we present one more locality in another region where the species has been found (Nyaung-U township in the Mandalay Region). Due to the lack of basically any information on this species distribution and habitat, including also photographs of its natural coloration in this habitat, the present study provides the first-time photographs of B. subaptera in its natural habitat from both localities, as well as some insights into its morphology, especially coloration, habitat, and behavior.
    Matched MeSH terms: Ecosystem*
  3. Wilkinson JL, Boxall ABA, Kolpin DW, Leung KMY, Lai RWS, Galbán-Malagón C, et al.
    Proc Natl Acad Sci U S A, 2022 Feb 22;119(8).
    PMID: 35165193 DOI: 10.1073/pnas.2113947119
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
    Matched MeSH terms: Ecosystem
  4. Sing, Lui Lo, Chen, Cheng Ann, Tzuen, Kiat Yap, Teruaki Yoshida
    MyJurnal
    A comparison of zooplankton abundance and community in the seagrass and non-seagrass areas of Limau-limauan and Bak- Bak waters within the newly established Tun Mustapha Marine Park was made during 15-17 May 2017. Samples were collected via horizontal tow of a 140 μm plankton net. Environmental variables (temperature, salinity, DO, pH, turbidity) showed no significant differences among the study sites. However, zooplankton showed increasing abundance from non-seagrass, seagrass edge, to seagrass areas at Limau-limauan, while abundance values were comparable among the stations at Bak-bak. Overall zooplankton abundance was significantly higher at the seagrass areas relative to the non-seagrass station at Limau-limauan (p < 0.005), while no statistical difference was found at Bak-Bak (p < 0.21). Mean canopy height was 3-fold higher (p < 0.001) at Limau-limauan than Bak-Bak, suggesting the importance of seagrass bed structural complexity in habitat preference for zooplankton. Cluster analysis revealed the zooplankton community from the seagrass area at Limau-limauan was different from that at seagrass edge and non-seagrass areas, which may be attributed to the influence of seagrass meadows in forming characteristic zooplankton compositions. Marked differences in zooplankton composition and abundance even in close vicinity of sites suggest the importance of local small-scale variations in seagrass habitats in shaping the zooplankton community.
    Matched MeSH terms: Ecosystem
  5. Leong RZL, Lim LH, Chew YL, Teo SS
    Anim Biotechnol, 2023 Dec;34(9):4474-4487.
    PMID: 36576030 DOI: 10.1080/10495398.2022.2158094
    Sea cucumber is a bioremediator as it can composite organic matter and excrete inorganic matter. Sea cucumber has the potential to serve as a bioindicator in marine habitat as they provide an integrated insight into the status of their environment over long periods. Sea cucumbers are sensitive to the organic concentration in the marine environment and can effectively provide an early warning system for any organic contamination that can negatively impact the ecosystem. The availability of a reference transcriptome for sea cucumber would constitute an essential tool for identifying genes involved in crucial steps of the defence pathway. De novo assembly of RNA-seq data enables researchers to study the transcriptomes without needing a genome sequence. In this study, sea cucumbers fed with Kappaphycus alvarezii powder were treated with 0.20 mg/L copper concentration comprehensive transcriptome data containing 75,149 Unigenes, with a total length of 20,460,032 bp. A total of 8820 genes were predicted from the unigenes, annotated, and functionally categorized into 25 functional groups with approximately 20% cluster in signal transduction mechanism. The reference transcriptome presented and validated in this study is meaningful for identifying a wide range of gene(s) related to the bioindication of sea cucumber in a high copper environment.
    Matched MeSH terms: Ecosystem
  6. Xi X, Wei M, Teo BS
    PLoS One, 2023;18(8):e0287401.
    PMID: 37561794 DOI: 10.1371/journal.pone.0287401
    Systematically analysing the relative importance and hierarchical relationships among the influencing factors of the cross-border e-commerce ecosystem holds rich theoretical value and practical significance for the development of this ecosystem. A total of 19 influencing factors covering four aspects affecting the cross-border e-commerce ecosystem are identified by means of the relevant literature, web pages, research, and discussions with relevant experts and scholars, and the decision-making trial and evaluation laboratory (DEMATEL) and interpretative structural modeling (ISM) method is used to analyse the cause-effect correlation of each factor and to obtain a cause-effect diagram and a multi-level recursive structure model. The results show that three factors, i.e., the e-commerce platform development level, cross-border e-commerce competitiveness, and the cross-border e-commerce transaction scale, have a greater degree of influence on the other influencing factors. Additionally, three factors, i.e., the information development level, GDP, and cross-border online shopping demand, are vulnerable to the influence of the other factors. The level of cross-border e-commerce platform development, cross-border e-commerce competitiveness, and inter-firm competition are the root factors and occupy an important position in the cross-border e-commerce ecosystem as influencing factors and influence the stability of the cross-border e-commerce ecosystem by affecting the other factors.
    Matched MeSH terms: Ecosystem*
  7. Shang L, Xu Y, Leaw CP, Lim PT, Wang J, Chen J, et al.
    Sci Total Environ, 2021 Aug 01;780:146484.
    PMID: 33774286 DOI: 10.1016/j.scitotenv.2021.146484
    The dinoflagellate genus Alexandrium has been well known for causing paralytic shellfish poisoning (PSP) worldwide. Several non-PSP toxin-producing species, however, have shown to exhibit fish-killing toxicity. Here, we report the allelopathic activity of Alexandrium leei from Malaysia to other algal species, and its toxicity to finfish and zooplankton, via laboratory bioassays. Thirteen microalgal species that co-cultured with Al. leei revealed large variability in the allelopathic effects of Al. leei on the test algae, with the growth inhibition rates ranging from 0 to 100%. The negative allelopathic effects of Al. leei on microalgae included loss of flagella and thus the motility, damages of chain structure, deformation in cell morphology, and eventually cell lysis. The finfish experienced 100% mortality within 24 h exposed to the live culture (2000-6710 cells·mL-1), while the rotifer and brine shrimp exhibited 96-100% and 90-100% mortalities within 48 h when exposed to 500-6000 cells·mL-1 of Al. leei. The mortality of the test animals depended on the Al. leei cell density exposed, leading to a linear relationship between mortality and cell density for the finfish, and a logarithmic relationship for the two zooplankters. When exposed to the treatments using Al. leei whole live culture, cell-free culture medium, extract of algal cells in the f/2-Si medium, extract of methanol, and the re-suspended freeze-and-thaw algal cells, the test organisms (Ak. sanguinea and rotifers) all died at the cell density of 8100 cells·mL-1 within 24 h. Toxin analyses by HILIC-ESI-TOF/MS and LC-ESI-MS/MS demonstrated that Al. leei did not produce PSP-toxins and 13-desmethyl spirolide C. Overall, our findings demonstrated potent allelopathy and toxicity of Al. leei, which do not only pose threats to the aquaculture industry, fisheries, and marine ecosystems but may also play a part role in the population dynamics and bloom formation of this species.
    Matched MeSH terms: Ecosystem
  8. Lee LP, Karbul HM, Citartan M, Gopinath SC, Lakshmipriya T, Tang TH
    Biomed Res Int, 2015;2015:820575.
    PMID: 26180812 DOI: 10.1155/2015/820575
    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.
    Matched MeSH terms: Ecosystem*
  9. Dayrat B, Goulding TC, Khalil M, Comendador J, Xuân QN, Tan SK, et al.
    Zookeys, 2019;877:31-80.
    PMID: 31592220 DOI: 10.3897/zookeys.877.36698
    As part of an ongoing effort to revise the taxonomy of air-breathing, marine, onchidiid slugs, a new genus, Laspionchis Dayrat & Goulding, gen. nov., is described from the mangroves of South-East Asia. It includes two new species, Laspionchis boucheti Dayrat & Goulding, sp. nov., and Laspionchis bourkei Dayrat & Goulding, sp. nov., both distributed from the Malacca Strait to the Philippines and Australia. This study is based on extensive field work in South-East Asia, comparative anatomy, and both mitochondrial (COI and 16S) and nuclear (ITS2 and 28S) DNA sequences. The two new species are found in the same habitat (mud surface in mangrove forests) and are externally cryptic but are distinct anatomically. Both species are also strongly supported by DNA sequences. Three cryptic, least-inclusive, reciprocally-monophyletic units within Laspionchis bourkei are regarded as subspecies: L. bourkei bourkei Dayrat & Goulding, ssp. nov., L. bourkei lateriensis Dayrat & Goulding, ssp. nov., and L. bourkei matangensis Dayrat & Goulding, ssp. nov. The present contribution shows again that species delineation is greatly enhanced by considering comparative anatomy and nuclear DNA sequences in addition to mitochondrial DNA sequences, and that thorough taxonomic revisions are the best and most efficient path to accurate biodiversity knowledge.
    Matched MeSH terms: Ecosystem
  10. Iskandar NL, Zainudin NA, Tan SG
    J Environ Sci (China), 2011;23(5):824-30.
    PMID: 21790056
    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.
    Matched MeSH terms: Ecosystem*
  11. Azrina MZ, Yap CK, Rahim Ismail A, Ismail A, Tan SG
    Ecotoxicol Environ Saf, 2006 Jul;64(3):337-47.
    PMID: 15964072
    A study of the impacts of anthropogenic activities on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River (Peninsular Malaysia) was conducted. Four pristine stations from the upstream and 4 stations at the downstream receiving anthropogenic impacts were selected along the river. For 4 consecutive months (March-June 1999), based on the Malaysian DOE (Malaysia Environmental Quality Report 2000, Department of Environment, Ministry of Science, Technology and Environment Malaysia. Maskha Sdn. Bhd. Kuala Lumpur, 86pp; Malaysia Environmental Quality Report 2001, Department of Environment, Ministry of Science, Technology and the Environment Malaysia) water quality index classes, the upstream stations recorded significantly (P<0.05) higher Biological Monitoring Working Party scores and better water quality indices than those of the downstream. The total number of macrobenthic taxa and their overall richness indices and diversity indices were significantly (P<0.05) higher at the upstream stations (54 taxa) than at the downstream stations (5 taxa). The upstream of the Langat River was dominated by Ephemeroptera and chironomid dipterans while other orders found in small quantities included Trichoptera, Diptera, Plecoptera, Odonata, Ephemeraptera, Coleoptera, and Gastropoda. On the other hand, the downstream of the river was mainly inhabited by the resistant Oligochaeta worms Limnodrilus spp. and Branchiodrilus sp. and Hirudinea in small numbers. The relationships between the physicochemical and the macrobenthic data were investigated by Pearson correlation analysis and multiple stepwise regression analysis. These statistical analyses showed that the richness and diversity indices were generally influenced by the total suspended solids and the conductivity of the river water. This study also highlighted the impacts of anthropogenic land-based activities such as urban runoff on the distribution and species diversity of macrobenthic invertebrates in the downstream of the Langat River. The data obtained in this study supported the use of the bioindicator concept for Malaysian rivers. Some sensitive (Trichopteran caddisflies and Ephemeraptera) and resistant species (Oligochaeta such as Limnodrilus spp.) are identified as potential bioindicators of clean and polluted river ecosystems, respectively, for Malaysian rivers.
    Matched MeSH terms: Ecosystem*
  12. Ng TH, Tan HH
    J Fish Biol, 2010 Jun;76(9):2238-60.
    PMID: 20557661 DOI: 10.1111/j.1095-8649.2010.02642.x
    Etroplus suratensis, a southern Asian cichlid, has established populations in Singapore. The fish, which was first collected in 1995, was probably introduced via the aquarium trade or through the Johor River in Malaysia. The growth, feeding and reproductive characteristics were found to follow its ecology in its native range in southern Asia, and its establishment in Singapore could be due to the similarity in environment and availability of food. Changes in intestinal length indicated diet shifts from a predominantly herbivorous to an omnivorous one as it matured. Stomach contents did not provide comparable evidence. Diet similarity to two other introduced cichlids may imply that interspecies resource competition exists. Closer monitoring is needed to determine its effects on the local environment.
    Matched MeSH terms: Ecosystem*
  13. Hadi UK, Takaoka H
    Acta Trop, 2018 Sep;185:133-137.
    PMID: 29452114 DOI: 10.1016/j.actatropica.2018.02.013
    Indonesia is one of the megadiversity country in the world endowed with rich and unique biodiversity insects such as blackflies species (Diptera: Simuliidae). Blackflies are found almost anywhere with running water suitable as habitat for the immature stages. This family is one of the most important groups of blood-sucking insects. This study collates the records of Simulium (Diptera: Simuliidae) in previous publications related fauna of Indonesia. Based on the results of this study, there were 124 species of blackflies in Indonesian Archipelago. All species are assigned to the genus Simulium Latreille s.l., and are placed into five subgenera, i.e. Gomphostilbia Enderlein, Morops Enderlein, Nevermannia Enderlein, Simulium Latreille s.str. and Wallacellum Takaoka. Further classification into 27 species groups within the subgenera were also made. Checklists of Indonesian Simuliidae are provided including data on the distribution of each species.
    Matched MeSH terms: Ecosystem
  14. Daud Z, Detho A, Rosli MA, Awang H, Ridzuan MBB, Tajarudin HA
    J Air Waste Manag Assoc, 2022 01;72(1):24-33.
    PMID: 33320054 DOI: 10.1080/10962247.2020.1862362
    When the inevitable generation of waste is considered as hazardous to health, damaging ecosystem to our environment, it is important to develop an innovative technologies to remediate pollutant sources for the safety and environmental protection. The development of adsorption technique for the reduction of extremely effective pollutants in this regard. Green mussel and zeolite mixing media were investigated for the reduction of the concentration of organic constituents (COD) and ammoniacal nitrogen from leachate. The leachate treatability was analyzed under various stages of treatment parameter, namely mixing ratio, shaking speed, contact time, and pH. Both adsorbent were sieve values in between 2.00-3.35 mm particle size. The optimum pH, shaking speed, contact time, and mixing ratio were determined. Leachate samples were collected from influent untreated detention pond at Simpang Renggam landfill site in Johor, Malaysia. The result of leachate characterization properties revealed that non-biodegradability leachate with higher concentrations of COD (1829 mg/L), ammoniacal nitrogen (406.68 mg/L) and biodegradability value (0.08) respectively. The optimal reduction condition of COD and ammoniacal nitrogen was obtained at 200 rpm shaken speed, 120 minute shaken time, optimum green mussel and zeolite mix ratio was 2.0:2.0, and pH 7. The isothermic study of adsorption shows that Langmuir is best suited for experimental results in terms of Freundlich model. The mixing media also provided promising results to treating leachate. This would be greatly applicable in conventionally minimizing zeolite use and thereby lowering the operating cost of leachate treatment.Implications: The concentration of organic constituents (COD) and ammoniacal nitrogen in stabilized landfill leachate have significant strong influences of human health and environmental. The combination of mixing media green mussel and zeolite adsorbent COD and ammoniacal nitrogen reduction efficiency from leachate. This would be greatly applicable in future research era as well as conventionally minimizing high cost materials like zeolite use and thereby lowering the operating cost of leachate treatment.
    Matched MeSH terms: Ecosystem
  15. Rozaimi M, Fairoz M, Hakimi TM, Hamdan NH, Omar R, Ali MM, et al.
    Mar Pollut Bull, 2017 Jun 30;119(2):253-260.
    PMID: 28460878 DOI: 10.1016/j.marpolbul.2017.03.073
    Seagrass meadows provide important carbon sequestration services but anthropogenic activities modify the natural ecosystem and inevitably lower carbon storage capacity. The tropical mixed-species meadows in the Sungai Pulai Estuary (Johor, Malaysia) are impacted by such activities. In this study, we provide baseline estimates for carbon stores analysed from sediment cores. In sediment depths up to 100cm, organic (OC) and inorganic carbon (IC) stores were 43-101MgCha-1 and 46-83MgCha-1, respectively, and are in the lower end of global average values. The bulk of OC (53-98%) originated from seston suggesting that the meadows had low capacity to retain seagrass-derived organic matter. The species factor resulted in some variability in OC stores but did not appear to influence IC values. The low carbon stores in the meadow may be a direct result of sediment disturbances but natural biogeochemical processes are not discounted as possible causal factors.
    Matched MeSH terms: Ecosystem
  16. Hosseinzadeh-Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, et al.
    J Hazard Mater, 2022 02 15;424(Pt C):127636.
    PMID: 34740507 DOI: 10.1016/j.jhazmat.2021.127636
    Waste cooking oil (WCO) is a hazardous waste generated at staggering values globally. WCO disposal into various ecosystems, including soil and water, could result in severe environmental consequences. On the other hand, mismanagement of this hazardous waste could also be translated into the loss of resources given its energy content. Hence, finding cost-effective and eco-friendly alternative pathways for simultaneous management and valorization of WCO, such as conversion into biodiesel, has been widely sought. Due to its low toxicity, high biodegradability, renewability, and the possibility of direct use in diesel engines, biodiesel is a promising alternative to mineral diesel. However, the conventional homogeneous or heterogeneous catalysts used in the biodiesel production process, i.e., transesterification, are generally toxic and derived from non-renewable resources. Therefore, to boost the sustainability features of the process, the development of catalysts derived from renewable waste-oriented resources is of significant importance. In light of the above, the present work aims to review and critically discuss the hazardous WCO application for bioenergy production. Moreover, various waste-oriented catalysts used to valorize this waste are presented and discussed.
    Matched MeSH terms: Ecosystem*
  17. Khounani Z, Abdul Razak NN, Hosseinzadeh-Bandbafha H, Madadi M, Sun F, Mohammadi P, et al.
    Environ Res, 2024 May 01;248:118286.
    PMID: 38280524 DOI: 10.1016/j.envres.2024.118286
    This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.
    Matched MeSH terms: Ecosystem*
  18. Kzar AA, Mat Jafri MZ, Mutter KN, Syahreza S
    PMID: 26729148 DOI: 10.3390/ijerph13010092
    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images).
    Matched MeSH terms: Ecosystem
  19. Norzaida Abas, Zalina Mohd Daud, Norazizi Mohamed, Syafrina Abdul Halim
    MyJurnal
    Climate change is undeniably the greatest issue facing our society. Around the globe,
    increasingly unpredictable weather patterns and extreme weather events are
    observed, causing considerable risks to human lives, properties and health safety and
    also on the natural ecosystem. The magnitude and impacts of climate change are
    growing, and particularly in Malaysia, studies show increases in temperature and
    changes in rainfall regimes. Such changes have profound implications, especially for
    coastal communities. Since knowledge and perceptions of the public on climate change
    could affect the success of implemented adaptation and mitigation options, it is
    essential to conduct assessments to gather such information. A public awareness and
    perception study was conducted at Sabak and Tanjung Karang, two coastal
    communities which were affected by changes in sea level and flooding incidences. The
    knowledge level and perceptions of climate change among respondents were assessed
    covering areas such as level of awareness of the respondents, their perceptions of
    climate change issues, their sentiments on climate change and adaptation measures,
    their socio-economic activity and the effect on their lives. Results show that majority
    of respondents were aware of climate change issues and challenges. High levels of
    concern about climate change were expressed with the majority were worried and
    uncertain about the climate change impact and hoped for government measures.
    Almost half of respondents cited significant damage to their properties and reduction
    in income generation. Overall, the results of the present study gave insights of the
    affected parties on perceptions and awareness pertaining to climate change, which
    could potentially be used to promote greater awareness of climate change matters and
    to gauge the public response to related policies and strategies.
    Matched MeSH terms: Ecosystem
  20. Obayashi Y, Wei Bong C, Suzuki S
    Front Microbiol, 2017;8:1952.
    PMID: 29067013 DOI: 10.3389/fmicb.2017.01952
    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the materials and method for measurements should be carefully selected in order to accurately determine the activities of microbial extracellular hydrolytic enzymes in aquatic ecosystems; especially, low protein binding materials should be chosen to use at overall processes of the measurement.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links