Displaying all 10 publications

Abstract:
Sort:
  1. Lau BYC, Amiruddin MD, Othman A
    Data Brief, 2020 Aug;31:105714.
    PMID: 32462070 DOI: 10.1016/j.dib.2020.105714
    Proteome data was obtained from the fruit mesocarps of the two oil palm species, namely, the African Elaeis guineensis (commercial tenera or commonly known as D x P and MPOB-Nigerian tenera) and the South American Elaeis oleifera. Total proteins were extracted from randomly selected fruitlets and subjected to proteomics characterisation by means of liquid chromatography mass spectrometry. Number of proteins identified, the grouping of the biological replicates from five developmental weeks after anthesis, and the localisation of gene corresponded to the detected proteins on the oil palm chromosomes, were presented. A total of 4,116, 4,210 and 4,081 proteins were found in commercial tenera and MPOB Nigerian tenera for Elaeis guineensis; and Elaeis oleifera, respectively. Principal component analysis showed two distinct clusters that corresponded to Elaeis guineensis and Elaeis oleifera. Collectively, genes that corresponded to the identified proteins were found to be located in all 16 oil palm chromosomes. A total of 59 proteins from Elaeis guineensis and Elaeis oleifera were down-regulated for >5-fold change during the peak of lipid biosynthesis compared to the onset. The same comparative analysis revealed that 66 proteins were up-regulated for >5-fold change. About 60.0% of the observed proteins were involved in catalytic activity while 28.5% were associated with redox reaction. Based on same datasets, the tricarboxylic acid cycle and 5-hydroxytryptamine degradation pathways were found to be enriched the most (>36-fold change). These data can be used to support the oil palm gene model validation and lipid metabolism research, particularly in the areas of oil yield and quality. The tabulated protein lists of identified proteins and their expression changes from these varieties were provided as supplementary files. Raw MSF and mzid files for all the oil palm species were deposited in the ProteomeXchange (PXD017436).
  2. Hassan H, Amiruddin MD, Weckwerth W, Ramli US
    Electrophoresis, 2019 01;40(2):254-265.
    PMID: 30370930 DOI: 10.1002/elps.201800232
    Palm oil is an edible vegetable oil derived from lipid-rich fleshy mesocarp tissue of oil palm (Elaeis guineensis Jacq.) fruit and is of global economic and nutritional relevance. While the understanding of oil biosynthesis in plants is improving, the fundamentals of oil biosynthesis in oil palm still require further investigations. To gain insight into the systemic mechanisms that govern oil synthesis during oil palm fruit ripening, the proteomics approach combining gel-based electrophoresis and mass spectrometry was used to profile protein changes and classify the patterns of protein accumulation during these complex physiological processes. Protein profiles from different stages of fruit ripening at 10, 12, 14, 15, 16, 18 and 20 weeks after anthesis (WAA) were analysed by two-dimensional gel electrophoresis (2DE). The proteome data were then visualised using a multivariate statistical analysis of principal component analysis (PCA) to get an overview of the proteome changes during the development of oil palm mesocarp. A total of 68 differentially expressed protein spots were successfully identified by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF/TOF) and functionally classified using ontology analysis. Proteins related to lipid production, energy, secondary metabolites and amino acid metabolism are the most significantly changed proteins during fruit development representing potential candidates for oil yield improvement endeavors. Data are available via ProteomeXchange with identifier PXD009579. This study provides important proteome information for protein regulation during oil palm fruit ripening and oil synthesis.
  3. Muhamad H, Ai TY, Khairuddin NS, Amiruddin MD, May CY
    Trop Life Sci Res, 2014 Dec;25(2):41-51.
    PMID: 27073598 MyJurnal
    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.
  4. Yaakub Z, Kamaruddin K, Singh R, Mustafa S, Marjuni M, Ting NC, et al.
    BMC Plant Biol, 2020 Jul 29;20(1):356.
    PMID: 32727448 DOI: 10.1186/s12870-020-02563-5
    BACKGROUND: Molecular breeding has opened new avenues for crop improvement with the potential for faster progress. As oil palm is the major producer of vegetable oil in the world, its improvement, such as developing compact planting materials and altering its oils' fatty acid composition for wider application, is important.

    RESULTS: This study sought to identify the QTLs associated with fatty acid composition and vegetative traits for compactness in the crop. It integrated two interspecific backcross two (BC2) mapping populations to improve the genetic resolution and evaluate the consistency of the QTLs identified. A total 1963 markers (1814 SNPs and 149 SSRs) spanning a total map length of 1793 cM were integrated into a consensus map. For the first time, some QTLs associated with vegetative parameters and carotene content were identified in interspecific hybrids, apart from those associated with fatty acid composition. The analysis identified 8, 3 and 8 genomic loci significantly associated with fatty acids, carotene content and compactness, respectively.

    CONCLUSIONS: Major genomic region influencing the traits for compactness and fatty acid composition was identified in the same chromosomal region in the two populations using two methods for QTL detection. Several significant loci influencing compactness, carotene content and FAC were common to both populations, while others were specific to particular genetic backgrounds. It is hoped that the QTLs identified will be useful tools for marker-assisted selection and accelerate the identification of desirable genotypes for breeding.

  5. Myint KA, Yaakub Z, Rafii MY, Oladosu Y, Samad MYA, Ramlee SI, et al.
    Biomed Res Int, 2021;2021:6620645.
    PMID: 33997027 DOI: 10.1155/2021/6620645
    Molecular characterization of oil palm germplasm is crucial in utilizing and conserving germplasm with promising traits. This study was conducted to evaluate the genetic diversity structures and relationships among 26 families of MPOB-Senegal oil palm germplasm using thirty-five microsatellite markers. High level of polymorphism (P = 96.26%), number of effective allele (Ne = 2.653), observed heterozygosity (Ho = 0.584), expected heterozygosity (He = 0.550), total heterozygosity (HT = 0.666), and rare alleles (54) were observed which indicates that MPOB-Senegal germplasm has a broad genetic variation. Among the SSR markers, sMo00053 and sMg00133 were the most informative markers for discrimination among the MPOB-Senegal oil palm germplasm for having the highest private alleles and the rare alleles. For selection and conservation, oil palm populations with high rare alleles and Nei's gene diversity index should be considered as these populations may possess unique genes for further exploitation.
  6. Ting NC, Yaakub Z, Kamaruddin K, Mayes S, Massawe F, Sambanthamurthi R, et al.
    BMC Genomics, 2016;17(1):289.
    PMID: 27079197 DOI: 10.1186/s12864-016-2607-4
    The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil.
  7. Ithnin M, Vu WT, Shin MG, Suryawanshi V, Sherbina K, Zolkafli SH, et al.
    Plant Sci, 2021 Mar;304:110731.
    PMID: 33568284 DOI: 10.1016/j.plantsci.2020.110731
    Existing Elaeis guineensis cultivars lack sufficient genetic diversity due to extensive breeding. Harnessing variation in wild crop relatives is necessary to expand the breadth of agronomically valuable traits. Using RAD sequencing, we examine the natural diversity of wild American oil palm populations (Elaeis oleifera), a sister species of the cultivated Elaeis guineensis oil palm. We genotyped 192 wild E. oleifera palms collected from seven Latin American countries along with four cultivated E. guineensis palms. Honduras, Costa Rica, Panama and Colombia palms are panmictic and genetically similar. Genomic patterns of diversity suggest that these populations likely originated from the Amazon Basin. Despite evidence of a genetic bottleneck and high inbreeding observed in these populations, there is considerable genetic and phenotypic variation for agronomically valuable traits. Genome-wide association revealed several candidate genes associated with fatty acid composition along with vegetative and yield-related traits. These observations provide valuable insight into the geographic distribution of diversity, phenotypic variation and its genetic architecture that will guide choices of wild genotypes for crop improvement.
  8. Singh R, Low ET, Ooi LC, Ong-Abdullah M, Ting NC, Nagappan J, et al.
    Nature, 2013 Aug 15;500(7462):340-4.
    PMID: 23883930 DOI: 10.1038/nature12356
    A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.
  9. Singh R, Low EL, Ooi LC, Ong-Abdullah M, Ting NC, Nookiah R, et al.
    New Phytol, 2020 04;226(2):426-440.
    PMID: 31863488 DOI: 10.1111/nph.16387
    Oil palm breeding involves crossing dura and pisifera palms to produce tenera progeny with greatly improved oil yield. Oil yield is controlled by variant alleles of a type II MADS-box gene, SHELL, that impact the presence and thickness of the endocarp, or shell, surrounding the fruit kernel. We identified six novel SHELL alleles in noncommercial African germplasm populations from the Malaysian Palm Oil Board. These populations provide extensive diversity to harness genetic, mechanistic and phenotypic variation associated with oil yield in a globally critical crop. We investigated phenotypes in heteroallelic combinations, as well as SHELL heterodimerization and subcellular localization by yeast two-hybrid, bimolecular fluorescence complementation and gene expression analyses. Four novel SHELL alleles were associated with fruit form phenotype. Candidate heterodimerization partners were identified, and interactions with EgSEP3 and subcellular localization were SHELL allele-specific. Our findings reveal allele-specific mechanisms by which variant SHELL alleles impact yield, as well as speculative insights into the potential role of SHELL in single-gene oil yield heterosis. Future field trials for combinability and introgression may further optimize yield and improve sustainability.
  10. Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, et al.
    Nature, 2015 Sep 24;525(7570):533-7.
    PMID: 26352475 DOI: 10.1038/nature15365
    Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links