Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Idris AS
    Gene, 2015 Feb 10;556(2):170-81.
    PMID: 25479011 DOI: 10.1016/j.gene.2014.11.055
    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics.
  2. Azizi P, Rafii MY, Maziah M, Abdullah SN, Hanafi MM, Latif MA, et al.
    Mech. Dev., 2015 Feb;135:1-15.
    PMID: 25447356 DOI: 10.1016/j.mod.2014.11.001
    Auxin and cytokinin regulate different critical processes involved in plant growth and environmental feedbacks. These plant hormones act either synergistically or antagonistically to control the organisation, formation and maintenance of meristem. Meristem cells can be divided to generate new tissues and organs at the locations of plant postembryonic development. The aboveground plant organs are created by the shoot apical meristem (SAM). It has been proposed that the phytohormone, cytokinin, plays a positive role in the shoot meristem function, promotes cell expansion and promotes an increasing size of the meristem in Arabidopsis, whereas it has the reverse effects in the root apical meristem (RAM). Over the last few decades, it has been believed that the apically derived auxin suppresses the shoot branching by inactivating the axillary buds. However, it has recently become clear that the mechanism of action of auxinis indirect and multifaceted. In higher plants, the regulatory mechanisms of the SAM formation and organ separation are mostly unknown. This study reviews the effects and functions of cytokinin and auxin at the shoot apical meristem. This study also highlights the merger of the transcription factor activity with the actions of cytokinin/auxin and their complex interactions with the shoot meristem in rice.
  3. Azizi P, Rafii MY, Abdullah SN, Nejat N, Maziah M, Hanafi MM, et al.
    Crit Rev Biotechnol, 2016;36(1):165-74.
    PMID: 25198435 DOI: 10.3109/07388551.2014.946883
    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice.
  4. Sahebi M, Hanafi MM, van Wijnen AJ, Azizi P, Abiri R, Ashkani S, et al.
    Gene, 2016 Aug 10;587(2):107-19.
    PMID: 27154819 DOI: 10.1016/j.gene.2016.04.057
    Alternative pre-mRNA splicing provides a source of vast protein diversity by removing non-coding sequences (introns) and accurately linking different exonic regions in the correct reading frame. The regulation of alternative splicing is essential for various cellular functions in both pathological and physiological conditions. In eukaryotic cells, this process is commonly used to increase proteomic diversity and to control gene expression either co- or post-transcriptionally. Alternative splicing occurs within a megadalton-sized, multi-component machine consisting of RNA and proteins; during the splicing process, this complex undergoes dynamic changes via RNA-RNA, protein-protein and RNA-protein interactions. Co-transcriptional splicing functionally integrates the transcriptional machinery, thereby enabling the two processes to influence one another, whereas post-transcriptional splicing facilitates the coupling of RNA splicing with post-splicing events. This review addresses the structural aspects of spliceosomes and the mechanistic implications of their stepwise assembly on the regulation of pre-mRNA splicing. Moreover, the role of phosphorylation-based, signal-induced changes in the regulation of the splicing process is demonstrated.
  5. Azizi P, Rafii MY, Mahmood M, Hanafi MM, Abdullah SN, Abiri R, et al.
    C. R. Biol., 2015 Jul;338(7):463-70.
    PMID: 26050100 DOI: 10.1016/j.crvi.2015.04.004
    In the present study, we have reported a simple, fast and efficient regeneration protocol using mature embryos as explants, and discovered its effective applicability to a range of Indica rice genotypes. We have considered the response of six varieties in the steps of the regeneration procedure. The results showed that calli were variably developed from the scutellar region of seeds and visible within 6-20 days. The highest and lowest calli induction frequency (70% and 51.66%) and number of induced calli from seeds (14 and 10.33) were observed in MR269 and MRQ74, respectively. The maximum and minimum number (7.66 and 4) and frequency of embryogenic calli (38.33% and 20%) were recorded in MR219 and MRQ74, respectively. However, the highest browning rate was observed in MR84 (87%) and the lowest rate in MRQ50 (46%). The majority of plants regenerated from embryogenic calli were obtained from MRQ50 (54%) and the minimum number of plants from MR84. In this study, the maximum numbers of plantlets were regenerated from the varieties with highest rate of embryogenic calli. Also, various varieties, including MRQ50, MR269, MR276 and MR219, were satisfactorily responding, while MRQ74 and MR84 weakly responded to the procedure. Such a simple, successful and generalized method possesses the potential to become an important tool for crop improvement and functional studies of genes in rice as a model monocot plant.
  6. Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R
    Mol Biotechnol, 2015 Oct;57(10):880-903.
    PMID: 26271955 DOI: 10.1007/s12033-015-9884-z
    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
  7. Azizi P, Osman M, Hanafi MM, Sahebi M, Yusop MR, Taheri S
    Plant Physiol Biochem, 2019 Nov;144:466-479.
    PMID: 31655345 DOI: 10.1016/j.plaphy.2019.10.014
    Pyricularia oryzae (P. oryzae), one of the most devastating fungal pathogens, is the cause of blast disease in rice. Infection with a blast fungus induces biological responses in the host plant that lead to its survival through the termination or suppression of pathogen growth, and metabolite compounds play vital roles in plant interactions with a wide variety of other organisms. Numerous studies have indicated that rice has a multi-layered plant immune system that includes pre-developed (e.g., cell wall and phytoanticipins), constitutive and inducible (phytoalexins) defence barriers against stresses. Significant progress towards understanding the basis of the molecular mechanisms underlying the defence responses of rice to P. oryzae has been achieved. Nonetheless, even though the important metabolites in the responses of rice to pathogens have been identified, their exact mechanisms and their contributions to plant immunity against blast fungi have not been elucidated. The purpose of this review is to summarize and discuss recent advances towards the understanding of the integrated metabolite variations in rice after P. oryzae invasion.
  8. Sahebi M, Hanafi MM, Rafii MY, Azizi P, Abiri R, Kalhori N, et al.
    Biomed Res Int, 2017;2017:9064129.
    PMID: 28191468 DOI: 10.1155/2017/9064129
    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.
  9. Taheri S, Abdullah TL, Noor YM, Padil HM, Sahebi M, Azizi P
    Data Brief, 2018 Aug;19:2452-2454.
    PMID: 30246104 DOI: 10.1016/j.dib.2018.07.038
    Curcuma alismatifolia, is an Asian crop from Zingiberaceae family, popularly used as ornamental plant in floriculture industry of Thailand and Cambodia. Different varieties with a wide range of colors can be found in species. Until now, few breeding programs have been done on this species and most commercially important cultivars are hybrids that are propagated vegetatively. In spite of other flowering plants, there is still lack of transcriptomic-based data on the functions of genes related to flower color in C. alismatifolia. The raw data presented in this article provides information on new original transcriptome data of two cultivars of C. alismatifolia by Illumina Hiseq. 4000 RNA-Seq technology which is the first ever report about this plant. The data is accessible via European Nucleotide Archive (ENA) under project number PRJEB18956.
  10. Azizi P, Hanafi MM, Sahebi M, Harikrishna JA, Taheri S, Yassoralipour A, et al.
    Funct Plant Biol, 2020 05;47(6):508-523.
    PMID: 32349860 DOI: 10.1071/FP19077
    Chromatin modulation plays important roles in gene expression regulation and genome activities. In plants, epigenetic changes, including variations in histone modification and DNA methylation, are linked to alterations in gene expression. Despite the significance and potential of in vitro cell and tissue culture systems in fundamental research and marketable applications, these systems threaten the genetic and epigenetic networks of intact plant organs and tissues. Cell and tissue culture applications can lead to DNA variations, methylation alterations, transposon activation, and finally, somaclonal variations. In this review, we discuss the status of the current understanding of epigenomic changes that occur under in vitro conditions in plantation crops, including coconut, oil palm, rubber, cotton, coffee and tea. It is hoped that comprehensive knowledge of the molecular basis of these epigenomic variations will help researchers develop strategies to enhance the totipotent and embryogenic capabilities of tissue culture systems for plantation crops.
  11. Ashkani S, Yusop MR, Shabanimofrad M, Azady A, Ghasemzadeh A, Azizi P, et al.
    Curr Issues Mol Biol, 2015;17:57-73.
    PMID: 25706446
    Allele mining is a promising way to dissect naturally occurring allelic variants of candidate genes with essential agronomic qualities. With the identification, isolation and characterisation of blast resistance genes in rice, it is now possible to dissect the actual allelic variants of these genes within an array of rice cultivars via allele mining. Multiple alleles from the complex locus serve as a reservoir of variation to generate functional genes. The routine sequence exchange is one of the main mechanisms of R gene evolution and development. Allele mining for resistance genes can be an important method to identify additional resistance alleles and new haplotypes along with the development of allele-specific markers for use in marker-assisted selection. Allele mining can be visualised as a vital link between effective utilisation of genetic and genomic resources in genomics-driven modern plant breeding. This review studies the actual concepts and potential of mining approaches for the discovery of alleles and their utilisation for blast resistance genes in rice. The details provided here will be important to provide the rice breeder with a worthwhile introduction to allele mining and its methodology for breakthrough discovery of fresh alleles hidden in hereditary diversity, which is vital for crop improvement.
  12. Hanafi MM, Azizi P, Akinbola ST, Ismail R, Sahibin AR, Wan Mohd Razi I, et al.
    Sci Rep, 2021 Jul 27;11(1):15234.
    PMID: 34315931 DOI: 10.1038/s41598-021-93704-9
    Sandy texture soil, a major problem for agriculture requires structure and capacity improvements. However, utilization of soil conditioner may arrest this problem. This research was carried out to investigate the accumulated levels of metal ions and radionuclides in water, soil and plants following phosphogypsum organic (PG organic) added to a sandy soil for 23-month in 3 cropping seasons. The condition in the field was simulated in the laboratory using an open leaching column for 30-day under constant but different pH of leachant. More ions were released at pH  5.6. The metal ions measured in the surface and borehole water, and soils were below the target values for respective standard raw drinking water. The metal ions did not accumulate in soil, plant and grain, and water as indicated by biological accumulation coefficients, contamination factors, I-geo index and pollution load index in a sandy soil that received the PG organic. Naturally occurring radionuclide concentrations, such as 226Ra, 228Ra, and 40K, in soil and plant tissue were found to be lower than the average value reported by several earlier studies. Under field condition the pH of water (i.e., rainfall) was greater than pH 5.6, thus renders PG organic became less soluble. There was no leaching of natural occurring radionuclides to the groundwater. Therefore, the application of PG organic to the studied soil had no impact on the soil, plants, and water and suitable as a soil conditioner in sandy texture soils.
  13. Sahebi M, Hanafi MM, Abdullah SN, Rafii MY, Azizi P, Nejat N, et al.
    Biomed Res Int, 2014;2014:971985.
    PMID: 24516858 DOI: 10.1155/2014/971985
    Silicon (Si) is the second most abundant element in soil after oxygen. It is not an essential element for plant growth and formation but plays an important role in increasing plant tolerance towards different kinds of abiotic and biotic stresses. The molecular mechanism of Si absorption and accumulation may differ between plants, such as monocotyledons and dicotyledons. Silicon absorption and accumulation in mangrove plants are affected indirectly by some proteins rich in serine and proline amino acids. The expression level of the genes responsible for Si absorption varies in different parts of plants. In this study, Si is mainly observed in the epidermal roots' cell walls of mangrove plants compared to other parts. The present work was carried out to discover further information on Si stress responsive genes in Rhizophora apiculata, using the suppression subtractive hybridization technique. To construct the cDNA library, two-month-old seedlings were exposed to 0.5, 1, and 1.5 mM SiO2 for 15 hrs and for 1 to 6 days resulting in a total of 360 high quality ESTs gained. Further examination by RT-PCR and real-time qRT-PCR showed the expression of a candidate gene of serine-rich protein.
  14. Azizi P, Rafii MY, Mahmood M, Abdullah SN, Hanafi MM, Nejat N, et al.
    PLoS One, 2015;10(5):e0126188.
    PMID: 26001124 DOI: 10.1371/journal.pone.0126188
    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.
  15. Shokryzadan P, Rajion MA, Meng GY, Boo LJ, Ebrahimi M, Royan M, et al.
    Crit Rev Food Sci Nutr, 2017 Sep 02;57(13):2737-2748.
    PMID: 26252346 DOI: 10.1080/10408398.2015.1060190
    Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid (C18:2 n-6), which is mostly found in the ruminant meat and dairy products. The CLA is known to have many potential health benefits, and considered a potent powerful fatty acid, which is linked to animal and human health. The present work aims to discuss the source and production, mechanism of action, and effects of CLA on humans, poultry, and ruminants by reviewing the recent studies carried out on CLA. Despite most of the recent studies indicating beneficial effects of CLA on improving body weight control parameters, its effects on reducing risk factors of cardiovascular diseases (CVD), inflammation, blood glucose, and insulin are still controversial, and need to be further studied in different hosts.
  16. Azizi P, Osman M, Hanafi MM, Sahebi M, Rafii MY, Taheri S, et al.
    Crit Rev Biotechnol, 2019 Nov;39(7):904-923.
    PMID: 31303070 DOI: 10.1080/07388551.2019.1632257
    A large number of rice agronomic traits are complex, multi factorial and polygenic. As the mechanisms and genes determining grain size and yield are largely unknown, the identification of regulatory genes related to grain development remains a preeminent approach in rice genetic studies and breeding programs. Genes regulating cell proliferation and expansion in spikelet hulls and participating in endosperm development are the main controllers of rice kernel elongation and grain size. We review here and discuss recent findings on genes controlling rice grain size and the mechanisms, epialleles, epigenomic variation, and assessment of controlling genes using genome-editing tools relating to kernel elongation.
  17. Azizi P, Rafii MY, Abdullah SN, Hanafi MM, Maziah M, Sahebi M, et al.
    Front Plant Sci, 2016;7:773.
    PMID: 27379107 DOI: 10.3389/fpls.2016.00773
    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g(-1) in transgenic plants. The M. oryzae population was constant at 31, 48, and 72 h after inoculation in transgenic plants, while it was increased in the inoculated control plants. This study successfully clarified that over-expression of the Pikh gene in transgenic plants can improve their blast resistance against the M. oryzae pathotype P7.2.
  18. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, et al.
    Front Plant Sci, 2015;6:886.
    PMID: 26635817 DOI: 10.3389/fpls.2015.00886
    Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.
  19. Sahebi M, Hanafi MM, Mohidin H, Rafii MY, Azizi P, Idris AS, et al.
    Biomed Res Int, 2018;2018:1494157.
    PMID: 29721500 DOI: 10.1155/2018/1494157
    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
  20. Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, et al.
    Sci Rep, 2019 Nov 05;9(1):16395.
    PMID: 31685940 DOI: 10.1038/s41598-019-53129-x
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links