Displaying all 15 publications

Abstract:
Sort:
  1. Rambabu K, Bharath G, Banat F, Show PL
    J Hazard Mater, 2021 01 15;402:123560.
    PMID: 32759001 DOI: 10.1016/j.jhazmat.2020.123560
    Production of multi-functional zinc oxide nanoparticles (ZnO-NPs) for wastewater treatment through green-approaches is a desirable alternative for conventional synthesis routes. Biomass waste valorization for nanoparticles synthesis has received increased research attention. The present study reports date pulp waste (DPW) utilization as an effective bio-reductant for green-synthesis of ZnO-NPs. A simple and eco-friendly process with low reaction time and calcination temperature was adopted for DPW mediated ZnO-NPs (DP-ZnO-NPs) synthesis. Microscopic investigations of DP-ZnO-NPs confirmed the non-agglomeration and spherical nature of particles with mean diameter of 30 nm. EDX and XPS analysis defined the chemical composition and product purity of DP-ZnO-NPs. UV and photoluminescence studies exhibited surface plasmonic resonance at 381 nm and fluorescent nature of DP-ZnO-NPs. FTIR studies established a formation mechanism outline for DP-ZnO-NPs. XRD and Raman investigations confirmed the crystalline and hexagonal wurtzite phase of DP-ZnO-NPs. DSC/TG analysis displayed the thermal stability of DP-ZnO-NPs with <10 wt% loss upto 700 °C. Photocatalytic degradation of hazardous methylene blue and eosin yellow dyes using DP-ZnO-NPs, showed rapid decomposition rate with 90 % degradation efficiency. Additionally, DP-ZnO-NPs demonstrated significant antibacterial effects on various pathogenic bacteria in terms of zone-of-inhibition measured by disc-diffusion method. Thus, the as-prepared DP-ZnO-NPs is suitable for industrial wastewater treatment.
  2. Rambabu K, Bharath G, Banat F, Show PL
    Environ Res, 2020 08;187:109694.
    PMID: 32485359 DOI: 10.1016/j.envres.2020.109694
    Biosorption ability of date palm empty fruit bunch (DPEFB) was examined for the removal of toxic hexavalent chromium (Cr6+) ions from synthetic wastewater. The pretreated DPEFB biosorbent was studied for its morphology and surface chemistry through Scanning electron microscopy, Energy dispersive elemental analysis and Fourier transform infrared spectroscopy. Effect of biosorption parameters such as pH, biosorbent dosage, contact time, temperature, initial feed concentration and agitation speed on the Cr6+ ions removal efficiency by DPEFB was critically evaluated. The isoelectric point for the DPEFB sorbent was observed at pH 2, above which it was dehydronated to capture the positively charged Cr6+ ions. Batch biosorption studies showed that an optimal chromium removal efficiency of 58.02% was recorded by the DPEFB biosorbent for pH 2, dosage 0.3 g, 100 rpm agitation speed, 120 min contact time, 50 mg/L initial feed concentration and 30 °C operational temperature. Thermodynamic analysis showed that the binding of Cr6+ ions on DPEFB surface was exothermic, stable and favorable at room temperature. Equilibrium behavior of chromium binding on DPEFB was more aligned to Temkin isotherm (R2 = 0.9852) highlighting the indirect interactions between Cr6+ ions and the biosorbent. Kinetic modeling revealed that the biosorption of Cr6+ ions by DPEFB obeyed pseudo-second order model than the pseudo-first order and intra-particle diffusion models. Reusability studies of the DPEFB sorbent showed that NaNO3 was an effective regenerant and the biosorbent can be efficiently reused up to three successive biosorption-desorption cycles for chromium removal. In summary, the results clearly showed that the DPEFB biowaste seems to be an efficient, economic and eco-friendly biosorbent for sustainable removal of toxic hexavalent chromium ions from domestic and industrial wastewater streams.
  3. Rambabu K, Bharath G, Thanigaivelan A, Das DB, Show PL, Banat F
    Bioresour Technol, 2021 Jan;319:124243.
    PMID: 33254466 DOI: 10.1016/j.biortech.2020.124243
    This study highlights biohydrogen production enrichment through NiO and CoO nanoparticles (NPs) inclusion to dark fermentation of rice mill wastewater using Clostridium beijerinckii DSM 791. NiO (~26 nm) and CoO (~50 nm) NPs were intrinsically prepared via facile hydrothermal method with polyhedral morphology and high purity. Dosage dependency studies revealed the maximum biohydrogen production characteristics for 1.5 mg/L concentration of both NPs. Biohydrogen yield was improved by 2.09 and 1.9 folds higher for optimum dosage of NiO and CoO respectively, compared to control run without NPs. Co-metabolites analysis confirmed the biohydrogen production through acetate and butyrate pathways. Maximum COD reduction efficiencies of 77.6% and 69.5% were observed for NiO and CoO inclusions respectively, which were higher than control run (57.5%). Gompertz kinetic model fitted well with experimental data of NPs assisted fermentation. Thus, NiO and CoO inclusions to wastewater fermentation seems to be a promising technique for augmented biohydrogen production.
  4. K R, G B, Banat F, Show PL, Cocoletzi HH
    Int J Biol Macromol, 2019 Apr 01;126:1234-1243.
    PMID: 30584938 DOI: 10.1016/j.ijbiomac.2018.12.196
    Health hazards associated with usage of plastic films for food preservation demands for development of active films from non-toxic and antioxidant rich bio-sources. The reported work highlights the development, characterization and application studies of chitosan films enhanced for their antioxidant activity by mango leaf extract (MLE) incorporation. Effect of MLE variation (1-5%) on the morphology, optical nature, water exposure and mechanical characteristics of the chitosan-MLE composite films was studied. Increase in the MLE concentration resulted in films with increased thickness and decreased moisture content. Contact angle, water solubility and vapor permeability analysis demonstrated the reduced hydrophilicity and water vapor penetrability of the films due to MLE inclusion. MLE films possessed better tensile strength (maximum of 23.06 ± 0.19 MPa) with reduced elongation ratio than the pure chitosan film (18.14 ± 0.72 MPa). Antioxidants assessment in terms of total phenolic content, DPPH radical scavenging, ferric reducing power and ABTS radical scavenging showed improved antioxidant activity with the incremental amounts of MLE in the chitosan films. Microscopic studies revealed the smooth, compact and dense nature of the MLE-chitosan films favouring low oxygen transport rates. Application studies to cashew nuts preservation for 28 days storage indicated 56% higher oxidation resistance for the 5% MLE film than a commercial polyamide/polyethylene film. Results highlight the potential and promising nature of MLE impregnated chitosan films as suitable alternative for active packaging films for food preservation.
  5. Rambabu K, Avornyo A, Gomathi T, Thanigaivelan A, Show PL, Banat F
    Bioresour Technol, 2023 Jan;367:128257.
    PMID: 36343781 DOI: 10.1016/j.biortech.2022.128257
    Phycoremediation is gaining attention not only as a pollutant mitigation approach but also as one of the most cost-effective paths to achieve carbon neutrality. When compared to conventional treatment methods, phycoremediation is highly effective in removing noxious substances from wastewater and is inexpensive, eco-friendly, abundantly available, and has many other advantages. The process results in valuable bioproducts and bioenergy sources combined with pollutants capture, sequestration, and utilization. In this review, microalgae-based phycoremediation of various wastewaters for carbon neutrality and circular economy is analyzed scientometrically. Different mechanisms for pollutants removal and resource recovery from wastewaters are explained. Further, critical parameters that influence the engineering design and phycoremediation performance are described. A comprehensive knowledge map highlighting the microalgae potential to treat a variety of industrial effluents is also presented. Finally, challenges and future prospects for industrial implementation of phycoremediation towards carbon neutrality coupled with circular economy are discussed.
  6. Pal P, Hasan SW, Abu Haija M, Sillanpää M, Banat F
    Crit Rev Biotechnol, 2023 Dec;43(7):971-981.
    PMID: 35968911 DOI: 10.1080/07388551.2022.2092716
    Colloidal gas aphrons (CGAs) are highly stable, spherical, micrometer-sized bubbles encapsulated by surfactant multilayers. They have several intriguing properties, including: high stability, large interfacial area, and the ability to maintain the same charge as their parent molecules. The physical properties of CGAs make them ideal for biotechnological applications such as the recovery of a variety of: biomolecules, particularly proteins, yeast, enzymes, and microalgae. In this review, the bio-application of CGAs for the recovery of natural components is presented, as well as: experimental results, technical challenges, and critical research directions for the future. Experimental results from the literature showed that the recovery of biomolecules was mainly determined by electrostatic or hydrophobic interactions between polyphenols and proteins (lysozyme, β-casein, β-lactoglobulin, etc.), yeast, biological molecules (gallic acid and norbixin), and microalgae with CGAs. Knowledge transfer is essential for commercializing CGA-based bio-product recovery, which will be recognized as a viable technology in the future.
  7. Mubashir M, Jusoh N, Majeed Z, Rambabu K, Banat F, Tao Y
    J Hazard Mater, 2020 Oct 27.
    PMID: 33153798 DOI: 10.1016/j.jhazmat.2020.124345
    This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
  8. Krishnamoorthy R, Govindan B, Banat F, Sagadevan V, Purushothaman M, Show PL
    J Biosci Bioeng, 2019 Jul;128(1):88-97.
    PMID: 30679113 DOI: 10.1016/j.jbiosc.2018.12.011
    Phosphoric acid impregnated activated carbon from date pits (DPAC) was prepared through single step activation. Prepared DPAC was studied for its structural, elemental, chemical, surface and crystal nature. Adsorption ability of the DPAC was assessed through divalent lead ions separation studies. Effect of adsorbent dosage, contact time, pH, operating temperature and initial feed concentration on lead removal by DPAC was studied. Maximum Pb(II) adsorption capacity of 101.35 mg/g was attained for a contact time of 30 min and pH of 6 at 30°C. Increase in initial feed concentration enhanced the adsorption ability of DPAC and the rise in adsorbent dosage resulted in improved Pb(II) removal efficiency. Thermodynamic studies revealed that the lead adsorption on DPAC was exothermic and instantaneous in nature. Kinetic and equilibrium studies confirmed the suitability of pseudo-second order and Langmuir isotherm for divalent lead ions binding on DPAC. Reusability studies showed that HCl was the effective regeneration medium and the DPAC could be reused for a maximum of 4 times with slight reduction in Pb(II) removal efficiency (<10%). Results indicated the promising use of date pits biomass as a low cost and efficient starting material to prepare activated carbon for divalent lead ions removal.
  9. Arumugham T, K R, Hasan SW, Show PL, Rinklebe J, Banat F
    Chemosphere, 2021 May;271:129525.
    PMID: 33445028 DOI: 10.1016/j.chemosphere.2020.129525
    Recently, supercritical fluid CO2 extraction (SFE) has emerged as a promising and pervasive technology over conventional extraction techniques for various applications, especially for bioactive compounds extraction and environmental pollutants removal. In this context, temperature and pressure regulate the solvent density and thereby effects the yield, selectivity, and biological/therapeutic properties of the extracted components. However, the nature of plant matrices primarily determines the extraction mechanism based on either density or vapor pressure. The present review aims to cover the recent research and developments of SFE technique in the extraction of bioactive plant phytochemicals with high antioxidant, antibacterial, antimalarial, and anti-inflammatory activities, influencing parameters, process conditions, the investigations for improving the yield and selectivity. In another portion of this review focuses on the ecotoxicology and toxic metal recovery applications. Nonpolar properties of Sc-CO2 create strong solvent strength via distinct intermolecular interaction forces with micro-pollutants and toxic metal complexes. This results in efficient removal of these contaminants and makes SFE technology as a superior alternative for conventional solvent-based treatment methods. Moreover, a compelling assessment on the therapeutic, functional, and solvent properties of SFE is rarely focused, and hence this review would add significant value to the SFE based research studies. Furthermore, we mention the limitations and potential of future perspectives related to SFE applications.
  10. Hai A, Bharath G, Daud M, Rambabu K, Ali I, Hasan SW, et al.
    Chemosphere, 2021 Nov;283:131162.
    PMID: 34157626 DOI: 10.1016/j.chemosphere.2021.131162
    Pyrolysis of agricultural biomass is a promising technique for producing renewable energy and effectively managing solid waste. In this study, groundnut shell (GNS) was processed at 500 °C in an inert gas atmosphere with a gas flow rate and a heating rate of 10 mL/min and 10 °C/min, respectively, in a custom-designed fluidized bed pyrolytic-reactor. Under optimal operating conditions, the GNS-derived pyrolytic-oil yield was 62.8 wt.%, with the corresponding biochar (19.5 wt.%) and biogas yields (17.7 wt.%). The GC-MS analysis of the GNS-based bio-oil confirmed the presence of (trifluoromethyl)pyridin-2-amine (18.814%), 2-Fluoroformyl-3,3,4,4-tetrafluoro-1,2-oxazetidine (16.23%), 5,7-dimethyl-1H-Indazole (11.613%), N-methyl-N-nitropropan-2-amine (6.5%) and butyl piperidino sulfone (5.668%) as major components, which are used as building blocks in the biofuel, pharmaceutical, and food industries. Furthermore, a 2 × 5 × 1 artificial neural network (ANN) architecture was developed to predict the decomposition behavior of GNS at heating rates of 5, 10, and 20 °C/min, while the thermodynamic and kinetic parameters were estimated using a non-isothermal model-free method. The Popescu method predicted activation energy (Ea) of GNS biomass ranging from 111 kJ/mol to 260 kJ/mol, with changes in enthalpy (ΔH), Gibbs-free energy (ΔG), and entropy (ΔS) ranging from 106 to 254 kJ/mol, 162-241 kJ/mol, and -0.0937 to 0.0598 kJ/mol/K, respectively. The extraction of high-quality precursors from GNS pyrolysis was demonstrated in this study, as well as the usefulness of the ANN technique for thermogravimetric analysis of biomass.
  11. Gebretatios AG, Kadiri Kanakka Pillantakath AR, Witoon T, Lim JW, Banat F, Cheng CK
    Chemosphere, 2023 Jan;310:136843.
    PMID: 36243081 DOI: 10.1016/j.chemosphere.2022.136843
    Following the discovery of Stöber silica, the realm of morphology-controlled mesoporous silica nanomaterials like MCM-41, SBA-15, and KCC-1 has been expanded. Due to their high BET surface area, tunable pores, easiness of functionalization, and excellent thermal and chemical stability, these materials take part a vital role in the advancement of techniques and technologies for tackling the world's largest challenges in the area of water and the environment, energy storage, and biotechnology. Synthesizing these materials with excellent physicochemical properties from cost-efficient biomass wastes is a foremost model of sustainability. Particularly, SiO2 with a purity >98% can be obtained from rice husk (RH), one of the most abundant biomass wastes, and can be template engineered into various forms of mesoporous silica materials in an economic and eco-friendly way. Hence, this review initially gives insight into why to valorize RH into value-added silica materials. Then the thermal, chemical, hydrothermal, and biological methods of high-quality silica extraction from RH and the principles of synthesis of mesoporous and fibrous mesoporous silica materials like SBA-15, MCM-41, MSNs, and KCC-1 are comprehensively discussed. The potential applications of rice husk-derived mesoporous silica materials in catalysis, drug delivery, energy, adsorption, and environmental remediation are explored. Finally, the conclusion and the future outlook are briefly highlighted.
  12. Pandey RP, Kallem P, Rasheed PA, Mahmoud KA, Banat F, Lau WJ, et al.
    Chemosphere, 2022 Feb;289:133144.
    PMID: 34863730 DOI: 10.1016/j.chemosphere.2021.133144
    An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m-2 h-1 bar-1. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.
  13. Tan KY, Low SS, Manickam S, Ma Z, Banat F, Munawaroh HSH, et al.
    Food Res Int, 2023 Jul;169:112870.
    PMID: 37254319 DOI: 10.1016/j.foodres.2023.112870
    Nutraceutical supplements provide health benefits, such as fulfilling the lack of nutrients in the human body or being utilized to treat or cure certain diseases. As the world population is growing, certain countries are experiencing food crisis challenges, causing natural foods are not sustainable to be used for nutraceutical production because it will require large-scale of food supply to produce enriched nutraceutics. The high demand for abundant nutritional compounds has made microalgae a reliable source as they can synthesize high-value molecules through photosynthetic activities. However, some microalgae species are limited in growth and unable to accumulate a significant amount of biomass due to several factors related to environmental conditions. Therefore, adding nanoparticles (NPs) as a photocatalyst is considered to enhance the yield rate of microalgae in an energy-saving and economical way. This review focuses on the composition of microalgal biomass for nutraceutical production, the health perspectives of nutritional compounds on humans, and the application of nanotechnology on microalgae for improved production and harvesting. The results obtained show that microalgal-based compounds indeed have better nutrients content than natural foods. However, nanotechnology must be further comprehended to make them non-hazardous and sustainable.
  14. Chong JWR, Khoo KS, Chew KW, Vo DN, Balakrishnan D, Banat F, et al.
    Bioresour Technol, 2023 Feb;369:128418.
    PMID: 36470491 DOI: 10.1016/j.biortech.2022.128418
    The identification of microalgae species is an important tool in scientific research and commercial application to prevent harmful algae blooms (HABs) and recognizing potential microalgae strains for the bioaccumulation of valuable bioactive ingredients. The aim of this study is to incorporate rapid, high-accuracy, reliable, low-cost, simple, and state-of-the-art identification methods. Thus, increasing the possibility for the development of potential recognition applications, that could identify toxic-producing and valuable microalgae strains. Recently, deep learning (DL) has brought the study of microalgae species identification to a much higher depth of efficiency and accuracy. In doing so, this review paper emphasizes the significance of microalgae identification, and various forms of machine learning algorithms for image classification, followed by image pre-processing techniques, feature extraction, and selection for further classification accuracy. Future prospects over the challenges and improvements of potential DL classification model development, application in microalgae recognition, and image capturing technologies are discussed accordingly.
  15. Ying Ying Tang D, Wayne Chew K, Ting HY, Sia YH, Gentili FG, Park YK, et al.
    Bioresour Technol, 2023 Feb;370:128503.
    PMID: 36535615 DOI: 10.1016/j.biortech.2022.128503
    This study presented a novel methodology to predict microalgae chlorophyll content from colour models using linear regression and artificial neural network. The analysis was performed using SPSS software. Type of extractant solvents and image indexes were used as the input data for the artificial neural network calculation. The findings revealed that the regression model was highly significant, with high R2 of 0.58 and RSME of 3.16, making it a useful tool for predicting the chlorophyll concentration. Simultaneously, artificial neural network model with R2 of 0.66 and low RMSE of 2.36 proved to be more accurate than regression model. The model which fitted to the experimental data indicated that acetone was a suitable extraction solvent. In comparison to the cyan-magenta-yellow-black model in image analysis, the red-greenblue model offered a better correlation. In short, the estimation of chlorophyll concentration using prediction models are rapid, more efficient, and less expensive.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links