Displaying all 15 publications

Abstract:
Sort:
  1. Abdul Aziz NU, Chiroma SM, Mohd Moklas MA, Adenan MI, Ismail A, Hidayat Baharuldin MT
    Brain Sci, 2020 Oct 13;10(10).
    PMID: 33066310 DOI: 10.3390/brainsci10100733
    Pathophysiology of postpartum depression (PPD) has been associated with many factors, such as neuroendocrine, neuroinflammation and neurotransmitter changes. Fish oil (FO) improves PPD both in humans and animals. However, little is known with regards to its pharmacology on a PPD-like rat model. Hence, the current study aimed at investigating the effects of FO on a PPD-like rat model. Female rats were induced with PPD-like symptoms and then randomly divided into six groups (n = 6) for two experimental protocols. Protocol 1 consisted of PPD-like rats (2 mL distilled water), PPD-like + FO (9 g/kg/d) and PPD-like + Fluoxetine (FLX) (15 mg/kg/d) groups of rats, whereas Protocol 2 consisted of PPD-like rats (2 mL distilled water) + PCPA (p-chlorophenylalanine) 150 mg/kg, PPD-like + FO (9 g/kg/d) + PCPA 150 mg/kg and PPD-like + FLX (15 mg/d) + PCPA 150 mg/kg groups of rats, respectively. All treatments were administered orally for 10 days postpartum, except PCPA, which was given intraperitoneally. Prior to euthanasia, the antidepressant-like effect of the FO was evaluated using the forced swimming test (FST) and open field test (OFT) on day 10 postpartum. Biochemical analysis of serotonin, serotonin metabolite and serotonin turnover from their prefrontal cortex and hippocampus were also measured. The results showed that FO decreased immobility time and increased swimming time significantly, but not climbing time in FST. Further, it also decreased serotonin metabolite and turnover significantly in the hippocampus of the PPD-like rats. In contrast, administration with PCPA reversed all the outcomes. The antidepressant-like effects of FO were found to be similar with that of FLX. Thus, it can be concluded that FO exerts its antidepressant-like effects in PPD-like rats through modulation of serotonergic system.
  2. Li LS, Chiroma SM, Hashim T, Adam SK, Mohd Moklas MA, Yusuf Z, et al.
    Heliyon, 2020 Jun;6(6):e04141.
    PMID: 32637674 DOI: 10.1016/j.heliyon.2020.e04141
    Erythroxylum cuneatum (E. cuneatum) which belongs to Erythroxylaceae family is a tropical flowering plant from the genus of Erythroxylum. It is used in Malaysia and Thailand's traditional medicines, yet there is limited scientific reports on its medicinal value. This study aimed at exploring the antioxidative and anti-inflammatory properties of E. cuneatum alkaloid leaf extract. The alkaloid extract was obtained through Soxhlet heat extraction method, while the antioxidantive properties were assessed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, ferric reducing antioxidant power (FRAP) and xanthine oxidase inhibition (XOI) assays. Further, anti-inflammatory property of the extract was evaluated on rat's model of carrageenan induced paw model of edema via physical measurements and histology. The extract exhibited antioxidant activity with an EC50 value of 1482 μg/ml in the DPPH radical scavenging assay, an EC1 value of 2191 μg/ml in the FRAP assay and 10.15 ± 6.20% in the XOI assay. Rats pretreated with the extract have shown dose dependent decrease in paw edema when compared to non-treated group of rats. The highest dose (50 mg/kg) of extract exhibited similar effects to aspirin in terms of reducing paw thickness, leucocytes infiltration and disruption of collagen. In conclusion, the E. cuneatum alkaloid leaf extract possesses both antioxidative and anti-inflammatory properties suggesting its potentials for future development of antioxidant and anti-inflammatory drugs.
  3. Chiroma SM, Mohd Moklas MA, Mat Taib CN, Baharuldin MTH, Amon Z
    Biomed Pharmacother, 2018 Jul;103:1602-1608.
    PMID: 29864948 DOI: 10.1016/j.biopha.2018.04.152
    Cognitive impairments and cholinergic dysfunctions have been well reported in old age disorders including Alzheimer's disease (AD). d-galactose (D-gal) has been reported as a senescence agent while aluminium act as a neurotoxic metal, but little is known about their combined effects at different doses. The aim of this study was to establish an animal model with cognitive impairments by comparing the effects of different doses of co-administrated D-gal and aluminium chloride (AlCl3). In this study male albino wistar rats were administered with D-gal 60 mg/kg.bwt intra peritoneally (I.P) injected and AlCl3 (100, 200, or 300 mg/kg.bwt.) was orally administered once daily for 10 consecutive weeks. Performance of the rats were evaluated through behavioural assessments; Morris water maze (MWM) and open field tests (OFT); histopathological examination was performed on the hippocampus; moreover biochemical measurements of acetylcholinesterase (AChE) and hyperphosphorylated tau protein (p-tau) were examined. The results of this experiment on rats treated with D-gal 60 + AlCl3 200 mg/kg.bwt showed near ideal cognitive impairments. The rats exhibited an obvious memory and learning deficits, marked neuronal loss in hippocampus, showed increase in AChE activities and high expression of p-tau within the tissues of the brain. This study concludes that D-gal 60 + AlCl3 200 mg/kg.bwt as the ideal dose for mimicking AD like cognitive impairments in albino wistar rats. It is also crucial to understand the pathogenesis of this neurodegenerative disease and for drug discovery.
  4. Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM
    PMID: 33504317 DOI: 10.2174/1871524921666210127110028
    BACKGROUND: Cannabis and its extracts are now being explored due to their huge health benefits. Although, the effect they elicit, whether on humans or rodents, may vary based on the age of the animal/subject and or the time in which the extract is administered. However, several debates exist concerning the various medical applications of these compounds. Nonetheless, their applicability as therapeutics should not be clouded based on their perceived negative biological actions.

    METHODS: Articles from reliable databases such as Science Direct, PubMed, Google Scholar, Scopus, and Ovid were searched. Specific search methods were employed using multiple keywords: ''Medicinal Cannabis; endocannabinoid system; cannabinoids receptors; cannabinoids and cognition; brain disorders; neurodegenerative diseases''. For the inclusion/exclusion criteria, only relevant articles related to medicinal Cannabis and its various compounds were considered.

    RESULTS: The current review highlights the role, effects, and involvement of Cannabis, cannabinoids, and endocannabinoids in preventing selected neurodegenerative diseases and possible amelioration of cognitive impairments. Furthermore, it also focuses on Cannabis utilization in many disease conditions such as Alzheimer's and Parkinson's disease among others.

    CONCLUSION: In conclusion, the usage of Cannabis should be further explored as accumulating evidence suggests that it could be effective and somewhat safe, especially when adhered to the recommended dosage. Furthermore, in-depth studies should be conducted in order to unravel the specific mechanism underpinning the involvement of cannabinoids at the cellular level and their therapeutic applications.

  5. Muhammad A, Hamman LL, Chiroma SM, Attah MOO, Dibal NI
    J Pharmacopuncture, 2023 Dec 31;26(4):327-337.
    PMID: 38162471 DOI: 10.3831/KPI.2023.26.4.327
    OBJECTIVES: Epilepsy is a neurological condition characterized by repeated seizures attributable to synchronous neuronal activity in the brain. The study evaluated the effect of acetone extract of Adansonia digitata stem bark (ASBE) on seizure score, cognition, depression, and neurodegeneration as well as the level of Gamma-Aminobutyrate acid (GABA) and glutamate in Pentylenetetrazol-kindled rats.

    METHODS: Thirty-five rats were assigned into five groups (n = 7). Groups 1-2 received normal saline and 35 mg/kg PTZ every other day. Groups 3-4 received 125 mg/kg and 250 mg/kg ASBE orally while group 5 received 5 mg/kg diazepam daily for twenty-six days. Group 3-5 received PTZ every other day, 30 mins after ASBE and diazepam.

    RESULTS: The results showed that Pentylenetetrazol (PTZ) induces seizure, reduces mobility time in force swim test and decreases the normal cell number in the brain. It also significantly decreases (p < 0.05) catalase, superoxide dismutase and reduced glutathione activities compared to the ASBE pre-treated rats. Pre-treatment with ASBE reportedly decreases seizure activities significantly (p < 0.05) and increases mobility time in the force swim test. ASBE also significantly elevate (p < 0.05) the normal cell number in the hippocampus, temporal lobe, and dentate gyrus.

    CONCLUSION: ASBE reduced seizure activity and prevented depression in PTZ-treated rats. It also prevented neurodegeneration by regulating glutamate and GABA levels in the brain as well as preventing lipid peroxidation.

  6. Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Adenan MI, et al.
    Biomed Pharmacother, 2019 Jan;109:853-864.
    PMID: 30551539 DOI: 10.1016/j.biopha.2018.10.111
    BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the commonest cause of dementia among the aged people. D-galactose (D-gal) is a senescence agent, while aluminium is a known neurotoxin linked to pathogenesis of AD. The combined administration of rats with d-gal and aluminium chloride (AlCl3) is considered to be an easy and a cheap method to obtain an animal model of AD. The plant Centella asiatica (CA) is reported to exert neuroprotective effects both in vitro and in vivo. Therefore, this study explored the protective effects of CA on cognition and brain ultrastructure in d-gal and AlCl3 induced rats.

    MATERIALS AND METHODS: Rats were exposed to d-gal 60 mg/kg/b.wt/day + AlCl3 200 mg/kg/b.wt/day and CA (200, 400 and 800 mg/kg/b.wt/day) and 1 mg/kg/b.wt/day of donepezil for 70 days. Different cognitive paradigms viz. T maze spontaneous alternation, modified elevated plus maze and novel object recognition test, were used to evaluate full lesions of the hippocampus, spatial learning and memory and non-spatial learning and memory respectively. Nissl's staining was used to determine the survival of hippocampus CA1 pyramidal cells, while transmission electron microscopy was used to check the ultrastructural changes.

    RESULTS: The results revealed that d-gal and AlCl3 could significantly impair behavior and cognitive functions, besides causing damage to the hippocampal CA1 pyramidal neurons in rats. In addition, it also caused ultrastructural morphological alterations in rat hippocampus. Conversely, co-administration o;f CA, irrespective of the dosage used, alleviated the cognitive impairments and pathological changes in the rats comparable to donepezil.

    CONCLUSION: In conclusion the results suggest that CA could protect cognitive impairments and morphological alterations caused by d-gal and AlCl3 toxicity in rats. Biochemical and molecular studies are ongoing to elucidate the probable pharmacodynamics of CA.

  7. Abdul Aziz NU, Chiroma SM, Mohd Moklas MA, Adenan MI, Ismail A, Basir R, et al.
    J Tradit Complement Med, 2021 Sep;11(5):419-426.
    PMID: 34522636 DOI: 10.1016/j.jtcme.2021.02.007
    Background and aim: Postpartum depression (PPD) is a familiar problem which is associated with about 10-20% of women after child delivery. Fish oil (FO) has a therapeutic potentials to many diseases including mood disorders. However, there is paucity of data on the effects of FO supplementation on PPD rat model. Hence, this study aimed at investigating the potentials of FO in ameliorating depressive-like behaviors in PPD rat by evaluating the involvement of NLRP3-inflammasome.

    Experimental procedure: Thirty six virgin adult female rats (n = 6) were randomly divided into six groups; Group 1-3 were normal control (NC), Sham (SHAM) and ovariectomized group (OVX) respectively whereas group 4-6 were PPD rats forced-fed once daily with distilled water (PPD), fish oil (PPD + FO; 9 g/kg) and Fluoxetine (PPD + FLX; 15 mg/kg) respectively from postpartum day 1 and continued for 10 consecutive days. Rats behaviors were evaluated on postpartum day 10 through open field test (OFT) and forced swimming test (FST), followed by biochemical analysis of NLRP3 inflammasome proteins pathway in their brain and determination of neutrophil to lymphocyte ratio (NLR).

    Results: PPD-induced rats exhibited high immobility and low swimming time in FST with increased inflammatory status; NLR, IL-1β and NFкB/NLRP3/caspase-1 activity in their hippocampus. However, administration of FO or fluoxetine reversed the aforementioned abnormalities.

    Conclusion: In conclusion, 10 days supplementation with FO ameliorated the depressive-like behaviors in PPD rats by targeting the NFкB/NLRP3/caspase-1/IL-1β activity. This has shed light on the potential of NLRP3 as a therapeutic target in treatment of PPD in rats.

  8. Mahdi O, Chiroma SM, Hidayat Baharuldin MT, Mohd Nor NH, Mat Taib CN, Jagadeesan S, et al.
    Biomedicines, 2021 Sep 19;9(9).
    PMID: 34572456 DOI: 10.3390/biomedicines9091270
    Neurotransmission and cognitive dysfunctions have been linked to old age disorders including Alzheimer's disease (AD). Aluminium is a known neurotoxic metal, whereas d-galactose (d-gal) has been established as a senescence agent. WIN55,212-2 (WIN), is a potent cannabinoid agonist which partially restores neurogenesis in aged rats. The current study aimed to explore the therapeutic potentials of WIN on Aluminium chloride (AlCl3) and d-gal-induced rat models with cognitive dysfunction. Healthy male albino Wistar rats weighing between 200-250 g were injected with d-gal 60 mg/kg intra peritoneally (i.p), while AlCl3 (200 mg/kg) was orally administered once daily for 10 consecutive weeks. Subsequently, from weeks 8-11 rats were co-administered with WIN (0.5, 1 and 2 mg/kg/day) and donepezil 1 mg/kg. The cognitive functions of the rats were assessed with a Morris water maze (MWM). Furthermore, oxidative stress biomarkers; malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and neurogenesis markers: Nestin and glial fibrillary acidic protein (GFAP) were also evaluated, as well as the histology of the hippocampus. The results revealed that rats exposed to AlCl3 and d-gal alone showed cognitive impairments and marked neuronal loss (p < 0.05) in their hippocampal conus ammonis 1 (CA1). Additionally, a significant decrease in the expressions of GFAP and Nestin was also observed, including increased levels of MDA and decreased levels of SOD and GSH. However, administration of WIN irrespective of the doses given reversed the cognitive impairments and the associated biochemical derangements. As there were increases in the levels SOD, GSH, Nestin and GFAP (p < 0.05), while a significant decrease in the levels of MDA was observed, besides attenuation of the aberrant cytoarchitecture of the rat's hippocampi. The biochemical profiles of the WIN-treated rats were normal. Thus, these findings offer possible scientific evidence of WIN being an effective candidate in the treatment of AD-related cognitive deficits.
  9. Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TYT, Abdul Rahim E, et al.
    J Biochem Mol Toxicol, 2020 Jun;34(6):e22483.
    PMID: 32125074 DOI: 10.1002/jbt.22483
    INTRODUCTION: Lead (Pb) is a ubiquitous toxic heavy metal that inflicts numerous clinical consequences on humans. Curcumin is the principal component of turmeric, which is reported to have antioxidative properties. This study aimed at evaluating the ameliorative effects of curcumin on Pb-induced hepatorenal toxicity in a rat model.

    METHODS: Thirty-six male Sprague-Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and six rats each for the lead-treated group (LTG) (50 mg/kg lead acetate [Pb acetate] for 4 weeks), recovery group (50 mg/kg Pb acetate for 4 weeks and left with no treatment for another 4 weeks), treatment group 1 (Cur100) (50 mg/kg Pb acetate for 4 weeks, followed by 100 mg/kg curcumin for 4 weeks), and treatment group 2 (Cur200) (50 mg/kg Pb acetate for 4 weeks, followed by 200 mg/kg curcumin for 4 weeks). All the experimental groups received oral treatments via orogastric-tube on alternate days. Pb concentration in the liver and kidney of the rats were evaluated using inductive-coupled plasma mass spectrometry techniques.

    RESULTS: Pb-administered rats revealed significant alteration in oxidative status and increased Pb concentration in their liver and kidney with obvious reduction of hemogram and increased in leukogram as well as aberration in histological architecture of the liver and kidney. However, treatment with curcumin reduces the tissue Pb concentrations and ameliorates the above mention alterations.

    CONCLUSIONS: The results in this study suggested that curcumin attenuates Pb-induced hepatorenal toxicity via chelating activity and inhibition of oxidative stress.

  10. Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Mohd Moklas MA, et al.
    Saudi J Biol Sci, 2020 Jun;27(6):1538-1552.
    PMID: 32489292 DOI: 10.1016/j.sjbs.2020.03.009
    Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.
  11. Wana MN, Watanabe M, Chiroma SM, Unyah NZ, Abdullahi SA, Nordin S, et al.
    Heliyon, 2023 Mar;9(3):e14370.
    PMID: 36950587 DOI: 10.1016/j.heliyon.2023.e14370
    Toxoplasma gondii (T. gondii) is a parasite capable of residing in the brain of their host which influences behaviour changes due to alterations in the neurotransmitters. Consequently, dopamine receptors (DRD) and indoleamine 2, 3 dioxygenase (IDO) dysregulation facilitate the progression of behaviour changes in a host as a response to infection. This study tested the effect of neurotransmitter changes as a result of T. gondii infection on rats cognitive impairment. The T. gondii strain of type I, II and III from Malaysia were previously identified by standard procedures. Sporulated oocysts each of type I, II and III were inoculated separately into three groups of Wistar rats (n = 9) respectively. Two separate control groups received either phosphate buffered saline (PBS) or MK-801 (dizocilpine). Behaviour changes were evaluated at nine weeks post infection in a square box, elevated plus maze and gene expression level of DRD and IDO compounds. The study revealed increased fatal feline attraction, reduced anxiety, decreased DRD and increased IDO gene expression in the T. gondii infected groups and MK-801 compared to the PBS control group. In conclusion, T. gondii infection alter the level of neurotransmitters in rat which cause cognitive impairment. This implies that all the T. gondii strain can cause behaviour changes if human were infected.
  12. Chiroma SM, Baharuldin MTH, Mat Taib CN, Amom Z, Jagadeesan S, Ilham Adenan M, et al.
    Int J Mol Sci, 2019 Apr 16;20(8).
    PMID: 31014012 DOI: 10.3390/ijms20081871
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder more prevalent among the elderly population. AD is characterised clinically by a progressive decline in cognitive functions and pathologically by the presence of neurofibrillary tangles (NFTs), deposition of beta-amyloid (Aβ) plaque and synaptic dysfunction in the brain. Centella asiatica (CA) is a valuable herb being used widely in African, Ayurvedic, and Chinese traditional medicine to reverse cognitive impairment and to enhance cognitive functions. This study aimed to evaluate the effectiveness of CA in preventing d-galactose/aluminium chloride (d-gal/AlCl3) induced AD-like pathologies and the underlying mechanisms of action were further investigated for the first time. Results showed that co-administration of CA to d-gal/AlCl3 induced AD-like rat models significantly increased the levels of protein phosphatase 2 (PP2A) and decreased the levels of glycogen synthase kinase-3 beta (GSK-3β). It was further observed that, CA increased the expression of mRNA of Bcl-2, while there was minimal effect on the expression of caspase 3 mRNA. The results also showed that, CA prevented morphological aberrations in the connus ammonis 3 (CA 3) sub-region of the rat's hippocampus. The results clearly demonstrated for the first time that CA could alleviate d-gal/AlCl3 induced AD-like pathologies in rats via inhibition of hyperphosphorylated tau (P-tau) bio-synthetic proteins, anti-apoptosis and maintenance of cytoarchitecture.
  13. Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Zyoud TYT, Rahim EBA, et al.
    Food Sci Nutr, 2023 May;11(5):2211-2231.
    PMID: 37181299 DOI: 10.1002/fsn3.3096
    A substantial global health burden is associated with neurotoxicity caused by lead (Pb) exposure and the common mechanism of this toxicity is mainly via oxidative damage. Curcumin has remarkable pharmacological activities but remains clinically constrained due to its poor bioavailability when orally administered. Currently, cockle shell-derived calcium carbonate nanoparticle (CSCaCO3NP) is gaining more acceptance in nanomedicine as a nanocarrier to various therapeutics. This study aimed at investigating the ameliorative effect of curcumin-loaded CSCaCO3NP (Cur-CSCaCO3NP) on lead-induced neurotoxicity in rats. A total of 36 male Sprague-Dawley rats were randomly assigned into five groups. Each group consists of 6 rats apart from the control group which consists of 12 rats. During the 4 weeks induction phase, all rats received a flat dose of 50 mg/kg of lead while the control group received normal saline. The treatment phase lasted for 4 weeks, and all rats received various doses of treatments as follows: group C (Cur 100) received 100 mg/kg of curcumin, group D (Cur-CSCaCO3NP 50) received 50 mg/kg of Cur-CSCaCO3NP, and group E (Cur-CSCaCO3NP 100) received 100 mg/kg of Cur-CSCaCO3NP. The motor function test was carried out using the horizontal bar method. The cerebral and cerebellar oxidative biomarker levels were estimated using ELISA and enzyme assay kits. Lead-administered rats revealed a significant decrease in motor scores and SOD activities with a resultant increase in MDA levels. Furthermore, marked cellular death of the cerebral and cerebellar cortex was observed. Conversely, treatment with Cur-CSCaCO3NP demonstrated enhanced ameliorative effects when compared with free curcumin treatment by significantly reversing the aforementioned alterations caused by lead. Thus, CSCaCO3NP enhanced the efficacy of curcumin by ameliorating the lead-induced neurotoxicity via enhanced attenuation of oxidative stress.
  14. Manoharan SD, Abdul Hamid H, Md Hashim NF, Cheema MS, Chiroma SM, Mustapha M, et al.
    Brain Res, 2024 Apr 15;1829:148793.
    PMID: 38309553 DOI: 10.1016/j.brainres.2024.148793
    Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and cognitive abilities, primarily in the elderly. The burden of AD extends beyond patients, impacting families and caregivers due to the patients' reliance on assistance for daily tasks. The main features of the pathogenesis of AD are beta-amyloid plaques and neurofibrillary tangles (NFTs), that strongly correlate with oxidative stress and inflammation. NFTs result from misfolded and hyperphosphorylated tau proteins. Various studies have focused on tau phosphorylation, indicating protein phosphatase 2A (PP2A) as the primary tau phosphatase and glycogen synthase kinase-3 beta (GSK-3β) as the leading tau kinase. Experimental evidence suggests that inhibition of PP2A and increased GSK-3β activity contribute to neuroinflammation, oxidative stress, and cognitive impairment. Hence, targeting PP2A and GSK-3β with pharmacological approaches shows promise in treating AD. The use of natural compounds in the drug development for AD have been extensively studied for their antioxidant, anti-inflammatory, anti-cholinesterase, and neuroprotective properties, demonstrating therapeutic advantages in neurological diseases. Alongside the development of PP2A activator and GSK-3β inhibitor drugs, natural compounds are likely to have neuroprotective effects by increasing PP2A activity and decreasing GSK-3β levels. Therefore, based on the preclinical and clinical studies, the potential of PP2A and GSK-3β as therapeutic targets of natural compounds are highlighted in this review.
  15. Mustapha S, Magaji RA, Magaji MG, Gaya IB, Umar B, Yusha'u Y, et al.
    Iran J Basic Med Sci, 2024;27(9):1077-1084.
    PMID: 39055875 DOI: 10.22038/IJBMS.2024.76605.16573
    Interest in naturally occurring phytochemicals has been on the increase, they are believed to reduce the risk of brain disorders. Hispidulin (HN) is a phenolic flavonoid compound with various pharmacological and biological effects on the central nervous system. It belongs to the flavone class of flavonoids. It can be found in different plant materials, especially fruits and vegetables. The literature used in this review was collected from credible scientific databases including ScienceDirect, Scopus, PubMed, Google Scholar, and Hindawi without time restriction, using relevant keywords, such as HN, brain, central nervous system, flavonoids, and flavones. HN was discovered to possess pro-apoptotic properties, act as an antioxidant, inhibit cytokine production and toll-like receptor 4 expression, as well as impede nuclear factor kappa beta and mitogen-activated protein kinase B. HN was also found to inhibit lipid peroxidation in vitro and reduce brain edema in mice. These pharmacological potentials suggest that HN is a promising candidate for neuroprotection in CNS disorders like depression and epilepsy. This review provides an update on the scientific literature concerning how these activities could help provide various forms of neuroprotection in the CNS. Additional experimental data on the effects of HN in models of neurological disorders and neuroprotection should be explored further. Based on the current study, HN is a promising candidate for neuroprotection of the CNS.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links