Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Hoh BP, Deng L, Xu S
    Front Genet, 2022;13:767018.
    PMID: 35154269 DOI: 10.3389/fgene.2022.767018
    Southeast Asia (SEA) has one of the longest records of modern human habitation out-of-Africa. Located at the crossroad of the mainland and islands of SEA, Peninsular Malaysia is an important piece of puzzle to the map of peopling and migration history in Asia, a question that is of interest to many anthropologists, archeologists, and population geneticists. This review aims to revisit our understanding to the population genetics of the natives from Peninsular Malaysia and Borneo over the past century based on the chronology of the technology advancement: 1) Anthropological and Physical Characterization; 2) Blood Group Markers; 3) Protein Markers; 4) Mitochondrial and Autosomal DNA Markers; and 5) Whole Genome Analysis. Subsequently some missing gaps of the study are identified. In the later part of this review, challenges of studying the population genetics of natives will be elaborated. Finally, we conclude our review by reiterating the importance of unveiling migration history and genetic diversity of the indigenous populations as a steppingstone towards comprehending disease evolution and etiology.
  2. Deng L, Zhang B, Shi G, Zhang C
    Heliyon, 2024 Feb 15;10(3):e25003.
    PMID: 38317991 DOI: 10.1016/j.heliyon.2024.e25003
    Wayfinding in hospitals today is a significant challenge for urban residents, especially for the elderly. This study investigated the perceptions and attitudes of the elderly toward existing hospital signage systems to identify the wayfinding needs in the healthcare environment. This study collected 762 elderly participants' perceptions and personal preferences regarding 12 features of the existing signage systems in three hospitals in the Yuexiu, Haizhu, and Liwan districts of Guangzhou using a questionnaire methodology. The study further explored the differences in perceptions and preferences for signage based on the gender, age, and educational level of the elderly participants. The findings indicate that most of the elderly participants experienced becoming lost in the hospital; they typically chose to ask others for directions first, followed by using the signage system. Most of the elderly participants had positive attitudes toward the current hospital signage system. Furthermore, they emphasized the importance of the signage system's graphics, texts, colors, and updates, which directly affects the readability and comprehensibility of signs. We found gender differences in perceptions and attitudes toward signage; male participants had more positive attitudes toward the hospital signage systems than female participants. Additionally, consistent with previous findings, the older the age of participants, the less comprehension they had regarding signage graphic symbols. We also found that the more educated elderly participants were, the more understanding of signage they had. At the same time, however, they were less satisfied, which is possibly because the more educated they were, the more aware they were of signage issues.
  3. Lee KC, Arai T, Ibrahim D, Deng L, Murata Y, Mori Y, et al.
    Environ Technol, 2016 Jun;37(12):1550-8.
    PMID: 26582429 DOI: 10.1080/09593330.2015.1120786
    This study characterizes crude enzymes derived from Penicillium rolfsii c3-2(1) IBRL, a mesophilic fungus isolated from the local soil of Malaysia. Prior to enzyme activity evaluation, P. rolfsii c3-2(1) IBRL was inoculated into a broth medium containing oil-palm trunk residues for the preparation of crude enzymes. Oil-palm trunk residues were optimally hydrolysed at pH5.0 and 50°C. P. rolfsii c3-2(1) IBRL-derived crude enzymes displayed higher thermal stability compared with the commercial enzymes, Celluclast 1.5 L and Acellerase 1500. Moreover, the hydrolysing activities of the P. rolfsii c3-2(1) IBRL-derived crude enzymes (xylan, arabinan, and laminarin) were superior compared to that of Celluclast 1.5 L and Acellerase 1500, and exhibit 2- to 3-fold and 3- to 4-fold higher oil-palm trunk residues-hydrolysing specific activity, respectively. This higher hydrolysis efficiency may be attributed to the weak 'lignin-binding' ability of the P. rolfsii c3-2(1) IBRL-derived enzymes compared to the commercial enzymes.
  4. Deng L, Guo F, Cheng KK, Zhu J, Gu H, Raftery D, et al.
    J Proteome Res, 2020 05 01;19(5):1965-1974.
    PMID: 32174118 DOI: 10.1021/acs.jproteome.9b00793
    In metabolomics, identification of metabolic pathways altered by disease, genetics, or environmental perturbations is crucial to uncover the underlying biological mechanisms. A number of pathway analysis methods are currently available, which are generally based on equal-probability, topological-centrality, or model-separability methods. In brief, prior identification of significant metabolites is needed for the first two types of methods, while each pathway is modeled separately in the model-separability-based methods. In these methods, interactions between metabolic pathways are not taken into consideration. The current study aims to develop a novel metabolic pathway identification method based on multi-block partial least squares (MB-PLS) analysis by including all pathways into a global model to facilitate biological interpretation. The detected metabolites are first assigned to pathway blocks based on their roles in metabolism as defined by the KEGG pathway database. The metabolite intensity or concentration data matrix is then reconstructed as data blocks according to the metabolite subsets. Then, a MB-PLS model is built on these data blocks. A new metric, named the pathway importance in projection (PIP), is proposed for evaluation of the significance of each metabolic pathway for group separation. A simulated dataset was generated by imposing artificial perturbation on four pre-defined pathways of the healthy control group of a colorectal cancer study. Performance of the proposed method was evaluated and compared with seven other commonly used methods using both an actual metabolomics dataset and the simulated dataset. For the real metabolomics dataset, most of the significant pathways identified by the proposed method were found to be consistent with the published literature. For the simulated dataset, the significant pathways identified by the proposed method are highly consistent with the pre-defined pathways. The experimental results demonstrate that the proposed method is effective for identification of significant metabolic pathways, which may facilitate biological interpretation of metabolomics data.
  5. Deng L, Ma L, Cheng KK, Xu X, Raftery D, Dong J
    J Proteome Res, 2021 06 04;20(6):3204-3213.
    PMID: 34002606 DOI: 10.1021/acs.jproteome.1c00064
    Metabolite set enrichment analysis (MSEA) has gained increasing research interest for identification of perturbed metabolic pathways in metabolomics. The method incorporates predefined metabolic pathways information in the analysis where metabolite sets are typically assumed to be mutually exclusive to each other. However, metabolic pathways are known to contain common metabolites and intermediates. This situation, along with limitations in metabolite detection or coverage leads to overlapping, incomplete metabolite sets in pathway analysis. For overlapping metabolite sets, MSEA tends to result in high false positives due to improper weights allocated to the overlapping metabolites. Here, we proposed an extended partial least squares (PLS) model with a new sparse scheme for overlapping metabolite set enrichment analysis, named overlapping group PLS (ogPLS) analysis. The weight vector of the ogPLS model was decomposed into pathway-specific subvectors, and then a group lasso penalty was imposed on these subvectors to achieve a proper weight allocation for the overlapping metabolites. Two strategies were adopted in the proposed ogPLS model to identify the perturbed metabolic pathways. The first strategy involves debiasing regularization, which was used to reduce inequalities amongst the predefined metabolic pathways. The second strategy is stable selection, which was used to rank pathways while avoiding the nuisance problems of model parameter optimization. Both simulated and real-world metabolomic datasets were used to evaluate the proposed method and compare with two other MSEA methods including Global-test and the multiblock PLS (MB-PLS)-based pathway importance in projection (PIP) methods. Using a simulated dataset with known perturbed pathways, the average true discovery rate for the ogPLS method was found to be higher than the Global-test and the MB-PLS-based PIP methods. Analysis with a real-world metabolomics dataset also indicated that the developed method was less prone to select pathways with highly overlapped detected metabolite sets. Compared with the two other methods, the proposed method features higher accuracy, lower false-positive rate, and is more robust when applied to overlapping metabolite set analysis. The developed ogPLS method may serve as an alternative MSEA method to facilitate biological interpretation of metabolomics data for overlapping metabolite sets.
  6. Deng L, Guo H, Wang S, Liu X, Lin Y, Zhang R, et al.
    Oxid Med Cell Longev, 2022;2022:9318721.
    PMID: 35178163 DOI: 10.1155/2022/9318721
    Racemic salbutamol ((RS)-sal), which consist of the same amount of (R)-sal and (S)-sal, has been used for asthma and COPD due to its bronchodilation effect. However, the effect of (R)-sal on repeated dextran sulfate sodium (DSS)-induced chronic colitis has not yet been investigated. In this study evaluated the potential effect of (R)-, (S)-, and (RS)-sal in mice with repeated DSS-induced chronic colitis and investigated the underlying mechanisms. Here, we verified that chronic colitis was significantly attenuated by (R)-sal, which was evidenced by notably mitigated body weight loss, disease activity index (DAI), splenomegaly, colonic lengths shortening, and histopathological scores. (R)-sal treatment noticeably diminished the levels of inflammatory cytokines (such as TNF-α, IL-6, IL-1β, and IFN-γ). Notably, the efficacy of (R)-sal was better than that of (RS)-sal. Further research revealed that (R)-sal mitigated colonic CD4 leukocyte infiltration, decreased NF-κB signaling pathway activation, improved the Nrf-2/HO-1 signaling pathway, and increased the expression of ZO-1 and occludin. In addition, (R)-sal suppressed the levels of TGF-β1, α-SMA, and collagen in mice with chronic colitis. Furthermore, the 16S rDNA sequences analyzed of the intestinal microbiome revealed that (R)-sal could mitigate the intestinal microbiome structure and made it more similar to the control group, which mainly by relieving the relative abundance of pathogens (such as Bacteroides) and increasing the relative abundance of probiotics (such as Akkermansia). Therefore, (R)-sal ameliorates repeated DSS-induced chronic colitis in mice by improving inflammation, suppressing oxidative stress, mitigating intestinal barrier function, relieving intestinal fibrosis, and regulating the intestinal microbiome community. These results indicate that (R)-sal maybe a novel treatment alternative for chronic colitis.
  7. Deng L, Wang S, Guo H, Liu X, Zou X, Zhang R, et al.
    Int Immunopharmacol, 2022 Feb;103:108501.
    PMID: 34974400 DOI: 10.1016/j.intimp.2021.108501
    Bambuterol (BMB) has been used clinically to treat asthma due to its bronchodilation activity. However, the effect of BMB on ulcerative colitis (UC) has not been examined. The present work focused on the effects of enantiomeric BMB on UC. Acute UC was induced in mice by 3% dextran sulfate sodium (DSS), and (R)-, (S) and (RS)-BMB were orally administered. Body weight loss and the disease activity index (DAI) were measured once a day. Inflammatory factors were detected by ELISA and qRT-PCR. Histological evaluations of colon samples were performed. IL-6, STAT3, and RORγt pathway-related proteins were analyzed by western blotting. The results verified that colitis severity was dramatically ameliorated by (R)-BMB, which was significantlybetter than the effect of (RS)-BMB or (S)-BMB, as evidenced by body weight loss, DAI, colon length, spleen/body weight ratio and histopathological manifestations. Furthermore, (R)-BMB treatment significantly diminished the levels of inflammatory cytokines and macrophages infiltration in mice with colitis. Besides, treated with (R)-BMB obviously elevated the level of β2AR. In addition, (R)-BMB decreased the expression of IL-6, IL-17, retinoic acid receptor-related orphan receptor-gamma t (RORt), and phosphorylated STAT3 (p-STAT3) in a dose-dependent manner in the colon tissues. The efficacy of (R)-BMB was more notable than aminosalicylic acid (5-ASA). (R)-BMB is either butyrilcholinesterase inhibitor or β2AR agonist which offers new treatment of colitis.
  8. Wang S, Huang J, Tan KS, Deng L, Liu F, Tan W
    Oxid Med Cell Longev, 2022;2022:4636618.
    PMID: 35126813 DOI: 10.1155/2022/4636618
    Inflammatory bowel diseases (IBDs) constitute a group of chronic intestinal conditions prominently featuring deranged metabolism. Effective pharmacological treatments for IBDs are lacking. Isosteviol sodium (STV-Na) exhibits anti-inflammatory activity and may offer therapeutic benefits in chronic colitis. However, the associated mechanism remains unclear. This study is aimed at exploring the therapeutic effects of STV-Na against chronic colitis in terms of metabolic reprogramming and macrophage polarization. Results show that STV-Na attenuated weight loss and colonic pathological damage and restored the hematological and biochemical parameters in chronic colitis mice models. STV-Na also restored intestinal permeability by increasing the goblet cell numbers, which was accompanied by lowered plasma lipopolysaccharide and diamine oxidase levels. Metabolomic analysis highlighted 102 candidate biomarkers and 5 vital pathways that may be crucial in the potential pharmacological mechanism of STV-Na in regulating intestinal inflammation and oxidative stress. These pathways were glycerophospholipid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, the pentose phosphate pathway, and phosphonate and phosphinate metabolism. Furthermore, STV-Na significantly decreased M1 macrophage polarization in the spleen and colon. The mRNA and protein levels of IL-1β, TNF-α, and NF-κB/p65 in colonic tissue from the colitis mice were decreased after the STV-Na treatment. Overall, STV-Na could alleviate chronic colitis by suppressing oxidative stress and inflammation levels, reprogramming the metabolic profile, inhibiting macrophage polarization, and suppressing the NF-κB/p65 signaling pathway. STV-Na remains a promising candidate drug for treating IBDs.
  9. Zhang B, Cheng P, Deng L, Romainoor NH, Han J, Luo G, et al.
    Heliyon, 2023 Oct;9(10):e20477.
    PMID: 37810838 DOI: 10.1016/j.heliyon.2023.e20477
    The transformation of social development modes has led to profound changes in the pattern of intangible cultural heritage, while simultaneously posing significant challenges to its preservation. The rapid development of artificial intelligence (AI) technology has brought new development opportunities in various research fields. This study intends, by constructing and evaluating a theoretical model, to investigate whether AI-generated cultural and creative products can promote the sustainability of intangible cultural heritage. The central focus of this research is to measure the effectiveness of AI technologies in promoting the sustainability of intangible cultural heritage. The context of the research design is rooted in the attention, interest, search, action, and share (AISAS) model, incorporating theories of perceived value and cultural identity, to forecast the long-term viability of AI-generated cultural and creative products in the promotion of intangible cultural heritage. This research was conducted in Tianjin, China and carried out using quantitative methods, a questionnaire survey, and the accidental sampling method, taking a sample of 291 participants for analysis. The results show that 1) the attraction of and interest and participation in AI-generated Yangliuqing New Year Print cultural and creative products have a positive effect on perceived value; 2) the purchase and sharing of these products have a positive impact on cultural identity; 3) the perceived value has a positive impact on cultural identity; and 4) cultural identity has a positive impact on the sustainability of intangible cultural heritage. This study contributes to the theoretical development and practical application of the AISAS model and offers valuable insights into the future development trajectory of intangible cultural heritage, thereby promoting its sustainability. The limitations of this study are its small sample size and geographical restrictions. In future studies, the sample size will be expanded and will include more regions for data analysis.
  10. Huang XQ, Deng L, Lu G, He CH, Wu PQ, Xie ZW, et al.
    Open Med (Wars), 2015;10(1):479-482.
    PMID: 28352740 DOI: 10.1515/med-2015-0082
    To observe a therapeutic effect of macrolide antibiotics in children with Pseudomonas aeruginosa pneumonia. Fifty-four cases of children with Pseudomonas aeruginosa pneumonia were randomly divided into an observation group (n=30) and a control group (n=24). The observation group was treated with macrolide antibiotics and cefoperazone/sulbactam. The control group was treated with cefoperazone/sulbactam during a course of 10-14 days. The total effective rate was 93.3% in the observation group, and 58.3% in the control group, and results in the observation group were superior to the control group notably (P>0.05). There were no significant differences in bacterial clearance rate, adverse reaction rate between two groups (P>0.05). The combined application of cefoperazone/sulbactam with macrolide antibiotics to treat Pseudomonas aeruginosa pneumonia in children would be a more effective clinical method.
  11. Wang Y, Liu X, Dong L, Cheng KK, Lin C, Wang X, et al.
    Anal Chem, 2023 Apr 18;95(15):6203-6211.
    PMID: 37023366 DOI: 10.1021/acs.analchem.2c04603
    Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.
  12. Lin G, Dong L, Cheng KK, Xu X, Wang Y, Deng L, et al.
    Anal Chem, 2023 Aug 22;95(33):12505-12513.
    PMID: 37557184 DOI: 10.1021/acs.analchem.3c02246
    Metabolic pathways are regarded as functional and basic components of the biological system. In metabolomics, metabolite set enrichment analysis (MSEA) is often used to identify the altered metabolic pathways (metabolite sets) associated with phenotypes of interest (POI), e.g., disease. However, in most studies, MSEA suffers from the limitation of low metabolite coverage. Random walk (RW)-based algorithms can be used to propagate the perturbation of detected metabolites to the undetected metabolites through a metabolite network model prior to MSEA. Nevertheless, most of the existing RW-based algorithms run on a general metabolite network constructed based on public databases, such as KEGG, without taking into consideration the potential influence of POI on the metabolite network, which may reduce the phenotypic specificities of the MSEA results. To solve this problem, a novel pathway analysis strategy, namely, differential correlation-informed MSEA (dci-MSEA), is proposed in this paper. Statistically, differential correlations between metabolites are used to evaluate the influence of POI on the metabolite network, so that a phenotype-specific metabolite network is constructed for RW-based propagation. The experimental results show that dci-MSEA outperforms the conventional RW-based MSEA in identifying the altered metabolic pathways associated with colorectal cancer. In addition, by incorporating the individual-specific metabolite network, the dci-MSEA strategy is easily extended to disease heterogeneity analysis. Here, dci-MSEA was used to decipher the heterogeneity of colorectal cancer. The present results highlight the clustering of colorectal cancer samples with their cluster-specific selection of differential pathways and demonstrate the feasibility of dci-MSEA in heterogeneity analysis. Taken together, the proposed dci-MSEA may provide insights into disease mechanisms and determination of disease heterogeneity.
  13. Wang P, Soh KL, Ying Y, Liao J, Huang X, Zhao H, et al.
    Support Care Cancer, 2023 Nov 27;31(12):723.
    PMID: 38008866 DOI: 10.1007/s00520-023-08166-8
    BACKGROUND: Malnutrition is a common complication in patients with nasopharyngeal carcinoma (NPC). However, there are few studies on risk factors for malnutrition in NPC patients. Our aims were to identify the risk factors for malnutrition in NPC patients.

    METHODS: NPC patients were recruited in this cross-sectional study, and they were divided into well-nourished and malnourished groups according to the Global Leadership Initiative on Malnutrition (GLIM). Potential risk factors were initially screened using univariate analysis (p 

  14. Wang S, Huang J, Liu F, Tan KS, Deng L, Lin Y, et al.
    J Inflamm Res, 2021;14:7107-7130.
    PMID: 34992409 DOI: 10.2147/JIR.S344990
    PURPOSE: Inflammatory bowel diseases (IBDs) are global health problems that are associated with immune regulation, but clinical IBDs treatment is currently inadequate. Effective preventive or therapeutic methods for immune disorders rely on controlling the function of immune cells. Isosteviol sodium (STV-Na) has antioxidant activity, but the therapeutic effect of STV-Na against IBD remain undocumented. Herein, we investigated the therapeutic effect of STV-Na in mice models with IBDs.

    METHODS: Mice received 3.5% DSS for 7 days to establish IBD models. Intraperitoneal STV-Na was given 2 days before DSS and lasted for 9 days. Commercially available drugs used in treating IBDs (5-aminosalicylic acid, dexamethasone, and infliximab) were used as positive controls. Samples were collected 7 days after colitis induction. Histopathological score, biochemical parameters, molecular biology methods, and metabolomics were used for evaluating the therapeutic effect of STV-Na.

    RESULTS: Our data revealed that STV-Na could significantly alleviate colon inflammation in mice with colitis. Specifically, STV-Na treatment improved body weight loss, increased colon length, decreased histology scores, and restored the hematological parameters of mice with colitis. The untargeted metabolomics analysis revealed that metabolic profiles were restored by STV-Na treatment. Furthermore, STV-Na therapy suppressed the number of CD68 macrophages and F4/80 cell infiltration. And STV-Na suppressed M1 and M2 macrophage numbers along with the mRNA expressions of proinflammatory cytokines. Moreover, STV-Na administration increased the number of regulatory T (Treg) cells while decreasing Th1/Th2/Th17 cell counts in the spleen. Additionally, STV-Na treatment restored intestinal barrier disruption in DSS-triggered colitis tissues by ameliorating the TJ proteins, increasing goblet cell proportions, and mucin protein production, and decreasing the permeability to FITC-dextran, which was accompanied by decreased plasma LPS and DAO contents.

    CONCLUSION: These results indicate that STV-Na can ameliorate colitis by modulating immune responses along with metabolic reprogramming, and could therefore be a promising therapeutic strategy for IBDs.

  15. Shen S, Deng L, Du Y, Gao J, Zhang C, Wang Y, et al.
    Int J Pharm, 2022 Dec 15;629:122385.
    PMID: 36375685 DOI: 10.1016/j.ijpharm.2022.122385
    Wound dressings can be applied over the wound sites to provide long-lasting wound management and improve wound healing. Biological wound dressings are superior to synthetic materials due to biodegradability and biocompatibility. These biomaterials have demonstrated huge potential in the field of wound dressings. Applying bibliometric analysis combined with results-based descriptions to characterize the research status, hotspots, and cutting-edge topics, this study is the first in-depth qualitative, quantitative, data-driven overview of biological wound dressings research in recent decades. Filtered data were used to construct co-citation, heatmaps, bi-clustering, strategy maps, and other analyses and visualization. The results show that research on biological wound dressings has progressed considerably in the last 5 years with extensive global collaboration. A clear knowledge base has been developed. Chitosan hydrogels, bacterial cellulose, active agents (silver nanoparticles, growth factors, curcumin, etc.), and electrospinning fibers stand out as research hotspots. The research frontiers include novel starting materials, precise and controlled release systems, and clinical and regenerative medicine applications. We interpreted an overview of the excavated topics and expected the findings here to provide a guide and inspire innovations for developing the next generation wound dressings.
  16. Guo C, Dong J, Deng L, Cheng K, Xu Y, Zhu H, et al.
    Molecules, 2023 May 25;28(11).
    PMID: 37298809 DOI: 10.3390/molecules28114332
    The quality of Panax Linn products available in the market is threatened by adulteration with different Panax species, such as Panax quinquefolium (PQ), Panax ginseng (PG), and Panax notoginseng (PN). In this paper, we established a 2D band-selective heteronuclear single quantum coherence (bs-HSQC) NMR method to discriminate species and detect adulteration of Panax Linn. The method involves selective excitation of the anomeric carbon resonance region of saponins and non-uniform sampling (NUS) to obtain high-resolution spectra in less than 10 min. The combined strategy overcomes the signal overlap limitation in 1H NMR and the long acquisition time in traditional HSQC. The present results showed that twelve well-separated resonance peaks can be assigned in the bs-HSQC spectra, which are of high resolution, good repeatability, and precision. Notably, the identification accuracy of species was found to be 100% for all tests conducted in the present study. Furthermore, in combination with multivariate statistical methods, the proposed method can effectively determine the composition proportion of adulterants (from 10% to 90%). Based on the PLS-DA models, the identification accuracy was greater than 80% when composition proportion of adulterants was 10%. Thus, the proposed method may provide a fast, practical, and effective analysis technique for food quality control or authenticity identification.
  17. Dai L, Deng L, Wang W, Li Y, Wang L, Liang T, et al.
    Environ Int, 2023 Feb;172:107775.
    PMID: 36739854 DOI: 10.1016/j.envint.2023.107775
    There is a growing concern about human health of residents living in areas where mining and smelting occur. In order to understand the exposure to the potentially toxic elements (PTEs), we here identify and examine the cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in scalp hair of residents living in the mining area (Bayan Obo, n = 76), smelting area (Baotou, n = 57) and a reference area (Hohhot, n = 61). In total, 194 hair samples were collected from the volunteers (men = 87, women = 107) aged 5-77 years old in the three areas. Comparing median PTEs levels between the young and adults, Ni levels were significantly higher in adults living in the smelting area while Cr was highest in adults from the mining area, no significant difference was found for any of the elements in the reference area. From the linear regression model, no significant relationship between PTEs concentration, log10(PTEs), and age was found. The concentrations of Ni, Cd, and Pb in hair were significantly lower in the reference area when compared to both mining and smelting areas. In addition, Cu was significantly higher in the mining area when compared to the smelting area. Factor analysis (FA) indicated that men and women from the smelting area (Baotou) and mining area (Bayan Obo), respectively, had different underlying communality of log10(PTEs), suggesting different sources of these PTEs. Multiple factor analysis quantilized the importance of gender and location when combined with PTEs levels in human hair. The results of this study indicate that people living in mining and/or smelting areas have significantly higher PTEs (Cu, Ni, Cd, and Pb) hair levels compared to reference areas, which may cause adverse health effects. Remediation should therefore be implemented to improve the health of local residents in the mining and smelting areas.
  18. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, et al.
    Nat Commun, 2014;5:3233.
    PMID: 24481126 DOI: 10.1038/ncomms4233
    Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.
  19. Deng L, Hoh BP, Lu D, Saw WY, Twee-Hee Ong R, Kasturiratne A, et al.
    Sci Rep, 2015 Sep 23;5:14375.
    PMID: 26395220 DOI: 10.1038/srep14375
    The Malay people are an important ethnic composition in Southeast Asia, but their genetic make-up and population structure remain poorly studied. Here we conducted a genome-wide study of four geographical Malay populations: Peninsular Malaysian Malay (PMM), Singaporean Malay (SGM), Indonesian Malay (IDM) and Sri Lankan Malay (SLM). All the four Malay populations showed substantial admixture with multiple ancestries. We identified four major ancestral components in Malay populations: Austronesian (17%-62%), Proto-Malay (15%-31%), East Asian (4%-16%) and South Asian (3%-34%). Approximately 34% of the genetic makeup of SLM is of South Asian ancestry, resulting in its distinct genetic pattern compared with the other three Malay populations. Besides, substantial differentiation was observed between the Malay populations from the north and the south, and between those from the west and the east. In summary, this study revealed that the genetic identity of the Malays comprises a mixed entity of multiple ancestries represented by Austronesian, Proto-Malay, East Asian and South Asian, with most of the admixture events estimated to have occurred 175 to 1,500 years ago, which in turn suggests that geographical isolation and independent admixture have significantly shaped the genetic architectures and the diversity of the Malay populations.
  20. Hoh BP, Zhang X, Deng L, Yuan K, Yew CW, Saw WY, et al.
    Genome Biol Evol, 2020 12 06;12(12):2245-2257.
    PMID: 33022050 DOI: 10.1093/gbe/evaa207
    North Borneo (NB) is home to more than 40 native populations. These natives are believed to have undergone local adaptation in response to environmental challenges such as the mosquito-abundant tropical rainforest. We attempted to trace the footprints of natural selection from the genomic data of NB native populations using a panel of ∼2.2 million genome-wide single nucleotide polymorphisms. As a result, an ∼13-kb haplotype in the Major Histocompatibility Complex Class II region encompassing candidate genes TSBP1-BTNL2-HLA-DRA was identified to be undergoing natural selection. This putative signature of positive selection is shared among the five NB populations and is estimated to have arisen ∼5.5 thousand years (∼220 generations) ago, which coincides with the period of Austronesian expansion. Owing to the long history of endemic malaria in NB, the putative signature of positive selection is postulated to be driven by Plasmodium parasite infection. The findings of this study imply that despite high levels of genetic differentiation, the NB populations might have experienced similar local genetic adaptation resulting from stresses of the shared environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links