Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Hamzah Ahmad, Nur Aqilah Othman
    MyJurnal
    This paper deals with the analysis of different Fuzzy membership type performance for Extended Kalman Filter (EKF) based mobile robot navigation. EKF is known to be incompetent in non-Gaussian noise condition and therefore the technique alone is not sufficient to provide solution. Motivated by this shortcoming, a Fuzzy based EKF is proposed in this paper. Three membership types are considered which includes the triangular, trapezoidal and Gaussian membership types to determine the best estimation results for mobile robot and landmarks locations. Minimal rule design and configuration are also other aspects being considered for analysis purposes. The simulation results suggest that the Gaussian memberships surpassed other membership type in providing the best solution in mobile robot navigation.
  2. Yin TT, Pin UL, Ghazali AH
    Trop Life Sci Res, 2015 Apr;26(1):101-10.
    PMID: 26868594 MyJurnal
    The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.
  3. Om AC, Ghazali AH, Keng CL, Ishak Z
    Trop Life Sci Res, 2009 Dec;20(2):71-7.
    PMID: 24575180 MyJurnal
    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth.
  4. Halim MA, Rahman AY, Sim KS, Yam HC, Rahim AA, Ghazali AH, et al.
    Genome Announc, 2016;4(1).
    PMID: 26893411 DOI: 10.1128/genomeA.00005-16
    Here, we report the complete genome sequence of Paenibacillus durus type strain ATCC 35681, which can fix atmospheric nitrogen even in the presence of nitrate.
  5. Aziz NA, Shaffie S, Rahman AYA, Hokchai Y, Najimudin N, Ghazali AHA
    Microbiol Resour Announc, 2021 Mar 18;10(11).
    PMID: 33737365 DOI: 10.1128/MRA.01051-20
    Burkholderia sp. strain USMB20 is a plant growth-promoting rhizobacterium that was isolated from nodules of the leguminous cover crop Mucuna bracteata. The draft genome sequence of Burkholderia sp. strain USMB20 has an assembly size of 7.7 Mbp in 26 contigs with a GC content of 66.88%.
  6. Nainggolan I, Radiman S, Hamzah AS, Hashim R
    Colloids Surf B Biointerfaces, 2009 Oct 1;73(1):84-91.
    PMID: 19540095 DOI: 10.1016/j.colsurfb.2009.05.021
    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.
  7. Mai CW, Kang YB, Hamzah AS, Pichika MR
    Food Funct, 2018 Jun 20;9(6):3344-3350.
    PMID: 29808897 DOI: 10.1039/c8fo00136g
    Vanilloid (4-hydroxy-3-methoxyphenyl benzenoid) containing foods are reported to possess many biological activities including anti-inflammatory properties. Homodimerisation of the Toll-like receptor-4 (TLR-4)/Myeloid differentiation factor 2 (MD-2) complex results in life-threatening complications in inflammatory disorders. In this study, we report activity of vanilloids in inhibition of TLR-4/MD-2 homodimersization and their molecular interactions with the receptor. The inhibitory activities of vanilloids were assessed in vitro by determining their antagonistic actions of lipopolysaccharide from Escherichia coli (LPSEc) in activation of TLR-4/MD-2 homodimerisation in TLR-4/MD-2/CD-14 transfected HEK-293 cells. The in vitro anti-inflammatory activity of vanilloids was also determined using RAW 264.7 cells. All the vanilloids were found to be active in the inhibition of TLR-4/MD-2 homodimersiation and nitric oxide production in RAW 264.7 cells. Rigid and flexible molecular docking studies were performed to gain insight into interactions between vanilloids and the binding site of the TLR-4/MD-2 complex.
  8. Najim N, Bathich Y, Zain MM, Hamzah AS, Shaameri Z
    Molecules, 2010 Dec 17;15(12):9340-53.
    PMID: 21169884 DOI: 10.3390/molecules15129340
    The aim of this study was to investigate the in vitro cellular activity of novel spiroisoxazoline type compounds against normal and cancer cell lines from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), lung cancer (A549), and leukaemia (HL-60). Our bioassay program revealed that the spiroisoxazoline type compounds show cytotoxicity only in lymphoma cell lines, which is in contrast with the pyrrolidine precursor of these spiroisoxazoline compounds, where significant cytotoxicity is seen in all normal and cancer cell lines. These data suggest a tumour-specific mechanism of action. In addition these data also show that spiroisoxazoline compounds are non-toxic in the human neuronphenotypic neuroblastoma SH-SY5Y cell line, and furthermore that they might protect cells from neurodegenerative disease.
  9. Chompa SS, Zuan ATK, Amin AM, Hun TG, Ghazali AHA, Sadeq BM, et al.
    Int Microbiol, 2023 Aug 31.
    PMID: 37651053 DOI: 10.1007/s10123-023-00423-4
    Soil salinity in rice cultivation areas is considered a severely limiting factor that adversely affects the quantity and quality of rice production in wetlands. Recently, the alternative use of salt-tolerant plant growth-promoting rhizobacteria (PGPR) inhabiting extreme saline conditions has gained remarkable attention and had positive effects on soil and crops. Therefore, a study has been initiated to develop a liquid biofertilizer formulation from locally isolated multi-strain salt-tolerant PGPR strains such as Bacillus tequilensis and Bacillus aryabhattai, using glycerol (5 mM), trehalose (10 mM), and polyvinylpyrrolidone (PVP) at 1% as additives to prolong the shelf-life of the bacteria. After 3 months of incubation, the bacterial population in the trehalose-supplemented mixed strain was highest at 9.73×107 CFU/mL, followed by UPMRE6 and UPMRB9 at 9.40×107 CFU/mL and 8.50×107 CFU/mL respectively. The results showed that the optimal trehalose concentration successfully prolonged the shelf-life of bacteria with minimal cell loss. Validation of quadratic optimization by response surface methodology revealed that the cell density of the mixed strain was 4.278×107 log CFU/mL after 24 h. The precision ratio was 99.7% higher than the predicted value in the minimized medium formulation: 0.267 g/mL trehalose, 1% glycerol, at 120 rpm agitation using the data analysis tools of Design Expert software. The population study confirmed the better and longer survival of salt-tolerant PGPR fortified with 10 mM trehalose, which was considered the best liquid biofertilizer formulation. Moreover, the optimized trehalose-glycerol liquid formulation can be used commercially as it is cost-effective.
  10. Chompa SS, Zuan ATK, Amin AM, Hun TG, Ghazali AHA, Sadeq BM, et al.
    Int Microbiol, 2024 Jan 03.
    PMID: 38172302 DOI: 10.1007/s10123-023-00469-4
    Soil salinity has been one of the significant barriers to improving rice production and quality. According to reports, Bacillus spp. can be utilized to boost plant development in saline soil, although the molecular mechanisms behind the interaction of microbes towards salt stress are not fully known. Variations in rice plant protein expression in response to salt stress and plant growth-promoting rhizobacteria (PGPR) inoculations were investigated using a proteomic method and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Findings revealed that 54 salt-responsive proteins were identified by mass spectrometry analysis (LC-MS/MS) with the Bacillus spp. interaction, and the proteins were functionally classified as gene ontology. The initial study showed that all proteins were labeled by mass spectrometry analysis (LC-MS/MS) with Bacillus spp. interaction; the proteins were functionally classified into six groups. Approximately 18 identified proteins (up-regulated, 13; down-regulated, 5) were involved in the photosynthetic process. An increase in the expression of eight up-regulated and two down-regulated proteins in protein synthesis known as chaperones, such as the 60 kDa chaperonin, the 70 kDa heat shock protein BIP, and calreticulin, was involved in rice plant stress tolerance. Several proteins involved in protein metabolism and signaling pathways also experienced significant changes in their expression. The results revealed that phytohormones regulated the manifestation of various chaperones and protein abundance and that protein synthesis played a significant role in regulating salt stress. This study also described how chaperones regulate rice salt stress, their different subcellular localizations, and the activity of chaperones.
  11. Johari SA, Mohtar M, Mohammad SA, Sahdan R, Shaameri Z, Hamzah AS, et al.
    Biomed Res Int, 2015;2015:823829.
    PMID: 25710030 DOI: 10.1155/2015/823829
    28 new pyrrolidine types of compounds as analogues for natural polyhydroxy alkaloids of codonopsinine were evaluated for their anti-MRSA activity using MIC and MBC value determination assay against a panel of S. aureus isolates. One pyrrolidine compound, MFM 501, exhibited good inhibitory activity with MIC value of 15.6 to 31.3 μg/mL against 55 S. aureus isolates (43 MRSA and 12 MSSA isolates). The active compound also displayed MBC values between 250 and 500 μg/mL against 58 S. aureus isolates (45 MRSA and 13 MSSA isolates) implying that MFM 501 has a bacteriostatic rather than bactericidal effect against both MRSA and MSSA isolates. In addition, MFM 501 showed no apparent cytotoxicity activity towards three normal cell lines (WRL-68, Vero, and 3T3) with IC50 values of >625 µg/mL. Selectivity index (SI) of MFM 501 gave a value of >10 suggesting that MFM 501 is significant and suitable for further in vivo investigations. These results suggested that synthetically derived intermediate compounds based on natural products may play an important role in the discovery of new anti-infective agents against MRSA.
  12. Shadid KA, Shaari K, Abas F, Israf DA, Hamzah AS, Syakroni N, et al.
    Phytochemistry, 2007 Oct;68(20):2537-44.
    PMID: 17602714
    Phytochemical studies on the leaves and trunk bark of Garcinia cantleyana yielded five caged-xanthonoids including one tetra- and four tri-prenylated xanthones, cantleyanone A (1), 7-hydroxyforbesione (2) and cantleyanones B-D (4-6), as well as a simple xanthone, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (3). Eight other known compounds, deoxygaudichaudione A, gaudichaudione H, friedelin, garbogiol, macranthol, glutin-5-en-3beta-ol, and a mixture of sitosterol and stigmasterol were also isolated. Their structures were elucidated by means of spectroscopic data and comparison of their NMR data with literature values. Significant cytotoxicity against MDA-MB-231, CaOV-3, MCF-7 and HeLa cancer cell-lines was demonstrated by cantleyanones B-D, 7-hydroxyforbesione, deoxygaudichaudione A and macranthol, with IC(50) values ranging from 0.22 to 17.17 microg/ml.
  13. Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M
    Phytochemistry, 2005 May;66(10):1141-7.
    PMID: 15924918
    Four new furanoanthraquinones, 2-hydroxymethyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[1'-hydroxy-2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[2'-1-hydroxy-1-methylethyl)-dihydrofurano]anthraquinone and 2-methyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano] anthraquinone or capitellataquinone A-D and four known anthraquinones, rubiadin, anthragallol 2-methyl ether, alizarin 1-methyl ether and digiferruginol, together with scopoletin were isolated from the stems of Hedyotis capitellata Wall (Rubiaceae). Lucidin-3-O-beta-glucoside was isolated from the roots of the plant. Characterization of the new compounds was carried out by extensive NMR studies using FGCOSY, FGHMQC, FGHMBC and DEPT-135 in addition to other spectroscopic methods.
  14. Mai CW, Kang YB, Nadarajah VD, Hamzah AS, Pichika MR
    Phytother Res, 2018 Jun;32(6):1108-1118.
    PMID: 29464796 DOI: 10.1002/ptr.6051
    In this study, a series of 20 structurally similar vanilloids (Vn) were tested for their antiproliferative effects against 12 human cancer cells: human breast (MCF-7 and MDA-MB-231), cervical (HeLa), ovarian (Caov-3), lung (A549), liver (HepG2), colorectal (HT-29 and HCT116), nasopharyngeal (CNE-1 and HK-1), and leukemic (K562 and CEM-SS) cancer cells. Among all the tested vanilloids, Vn16 (6-shogaol) exhibited the most potent cytotoxic effects against human colorectal cancer cells (HT-29). The apoptotic induction effects exhibited by Vn16 on HT-29 cells were confirmed using dual staining fluorescence microscopy and enzyme-linked immunosorbent assay. The effects of Vn16 on regulation of 43 apoptotic-related markers were determined in HT-29. The results suggested that 8 apoptotic markers (caspase 8, BAD, BAX, second mitochondrial-derived activator, caspase 3, survivin, bcl-2, and cIAP-2) were either upregulated or downregulated. These results further support the chemopreventive properties of foods that contain vanilloids.
  15. Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, et al.
    Phytochemistry, 2007 Mar;68(6):904-12.
    PMID: 17234223
    The plant Andrographis paniculata found throughout Southeast Asia contains Andrographolide 1, a diterpenoid lactone, which has antitumour activities against in vitro and in vivo breast cancer models. In the present study, we report on the synthesis of andrographolide derivatives, 3,19-isopropylideneandrographolide (2), 14-acetyl-3,19-isopropylideneandrographolide (3) and 14-acetylandrographolide (4), and their in vitro antitumour activities against a 2-cell line panel consisting of MCF-7 (breast cancer cell line) and HCT-116 (colon cancer cell line). Compounds 2 and 4 were also screened at the US National Cancer Institute (NCI) for their activities against a panel of 60 human cancer cell lines derived from nine cancer types. Compound 2 was found to be selective towards leukaemia and colon cancer cells, and compound 4 was selective towards leukaemia, ovarian and renal cancer cells at all the dose-response parameters. Compounds 2 and 4 showed non-specific phase of the cell cycle arrest in MCF-7 cells treated at different intervals with different concentrations. NCI's COMPARE and SOM mechanistic analyses indicated that the anticancer activities of these new class of compounds were not similar to that of standard anticancer agents, suggesting novel mechanism(s) of action.
  16. Zakaria ZA, Sani MH, Mohammat MF, Mansor NS, Shaameri Z, Kek TL, et al.
    Can J Physiol Pharmacol, 2013 Dec;91(12):1143-53.
    PMID: 24289087 DOI: 10.1139/cjpp-2013-0099
    This study was carried out to determine the antinociceptive activity of a novel synthetic oxopyrrolidine-based compound, (2R,3R,4S)-ethyl 4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate (ASH21374), and to elucidate the involvement of the opioid, vanilloid, glutamate, and nitric oxide - cyclic guanosine monophosphate (NO/cGMP) systems in modulating the observed antinociception. ASH21374, in the doses of 2, 10, and 100 mg/kg body mass, was administered orally to mice 60 mins prior to exposure to various antinociceptive assays. From the results obtained, ASH21374 exhibited significant (P < 0.05) antinociceptive activity in the abdominal constriction, hot-plate, and formalin tests that was comparable with 100 mg/kg acetylsalicylic acid or 5 mg/kg morphine, respectively. ASH21374 also attenuated capsaicin- and glutamate-induced paw licking. Pre-treatment with 5 mg/kg naloxone significantly (P < 0.05) inhibited the activity in all assays, while pretreatment with 10 mg/kg β-funaltraxamine, 1 mg/kg naltrindole, or 1 mg/kg nor-binaltorphimine significantly (P < 0.05) reversed the activity in the abdominal constriction test. l-Arginine, N(G)-nitro-l-arginine methyl esters (l-NAME), methylene blue, and their combinations, failed to inhibit the ASH21374 antinociceptive activity. In conclusion, ASH21374 demonstrated antinociceptive activities on the peripheral and central nervous systems, mediated through the activation of opioid receptors, inhibition of the glutamatergic system, and attenuation of vanilloid-mediated nociceptive transmission. Further studies have been planned to determine the pharmacological potential of ASH21374.
  17. Abdul Sani NF, Amir Hamzah AIZ, Abu Bakar ZH, Mohd Yusof YA, Makpol S, Wan Ngah WZ, et al.
    Cells, 2021 06 27;10(7).
    PMID: 34199148 DOI: 10.3390/cells10071611
    The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
  18. Zarudin NH, Normaya E, Shamsuri SS, Iqbal A, Mat Piah MB, Abdullah Z, et al.
    Int J Biol Macromol, 2024 Feb;258(Pt 2):129168.
    PMID: 38171432 DOI: 10.1016/j.ijbiomac.2023.129168
    Tyrosinase is a key enzyme in enzymatic browning, causing quality losses in food through the oxidation process. Thus, the discovery of an effective and natural tyrosinase inhibitor via green technology is of great interest to the global food market due to food security and climate change issues. In this study, Syzygium aqueum (S. aqueum) leaves, which are known to be rich in phenolic compounds (PC), were chosen as a natural source of tyrosinase inhibitor, and the effect of the sustainable, supercritical fluid extraction (SFE) process was evaluated. Response surface methodology-assisted supercritical fluid extraction (RSM-assisted SFE) was utilized to optimize the PCs extracted from S. aqueum. The highest amount of PC was obtained at the optimum conditions (55 °C, 3350 psi, and 70 min). The IC50 (661.815 μg/mL) of the optimized extract was evaluated, and its antioxidant activity (96.8 %) was determined. Gas chromatography-mass spectrometry (GC-MS) results reveal that 2',6'-dihydroxy-4'-methoxychalcone (2,6-D4MC) (82.65 %) was the major PC in S. aqueum. Chemometric analysis indicated that 2,6-D4MC has similar chemical properties to the tyrosinase inhibitor control (kaempferol). The toxicity and physiochemical properties of the novel 2,6-D4MC from S. aqueum revealed that the 2,6-D4MC is safer than kaempferol as predicted via absorption, distribution, metabolism, and excretion (ADME) evaluation. Enzyme kinetic analysis shows that the type of inhibition of the optimized extract is non-competitive inhibition with Km = 1.55 mM and Vmax = 0.017 μM/s. High-performance liquid chromatography (HPLC) analysis shows the effectiveness of S. aqueum as a tyrosinase inhibitor. The mechanistic insight of the tyrosinase inhibition using 2,6-D4MC was successfully calculated using density functional theory (DFT) and molecular docking approaches. The findings could have a significant impact on food security development by devising a sustainable and effective tyrosinase inhibitor from waste by-products that is aligned with the United Nation's SDG 2, zero hunger.
  19. Md Idris MH, Mohd Amin SN, Mohd Amin SN, Wibowo A, Zakaria ZA, Shaameri Z, et al.
    PMID: 34323638 DOI: 10.1080/10799893.2021.1951756
    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed to treat inflammatory-related diseases, pain and fever. However, the prolong use of traditional NSAIDs leads to undesirable side effects such as gastric, ulceration, and renal toxicity due to lack of selectivity toward respective targets for COX-2, 5-LOX, and PDE4B. Thus, targeting multiple sites can reduce these adverse effects of the drugs and increase its potency. A series of methoxyflavones (F1-F5) were synthesized and investigated for their anti-inflammatory properties through molecular docking and inhibition assays. Among these flavones, only F2 exhibited selectivity toward COX-2 (Selectivity Index, SI: 3.90, COX-2 inhibition: 98.96 ± 1.47%) in comparison with celecoxib (SI: 7.54, COX-2 inhibition: 98.20 ± 2.55%). For PDEs, F3 possessed better selectivity to PDE4B (SI: 4.67) than rolipram (SI: 0.78). F5 had the best 5-LOX inhibitory activity among the flavones (33.65 ± 4.74%) but less than zileuton (90.81 ± 0.19%). Docking analysis indicated that the position of methoxy group and the substitution of halogen play role in determining the bioactivities of flavones. Interestingly, F1-F5 displayed favorable pharmacokinetic profiles and acceptable range of toxicity (IC50>70 µM) in cell lines with the exception for F1 (IC50: 16.02 ± 1.165 µM). This study generated valuable insight in designing new anti-inflammatory drug based on flavone scaffold. The newly synthesized flavones can be further developed as future therapeutic agents against inflammation.
  20. Shamsuddin MA, Ali AH, Zakaria NH, Mohammat MF, Hamzah AS, Shaameri Z, et al.
    Pharmaceuticals (Basel), 2021 Nov 17;14(11).
    PMID: 34832956 DOI: 10.3390/ph14111174
    Widespread resistance of Plasmodium falciparum to current artemisinin-based combination therapies necessitate the discovery of new medicines. Pharmacophoric hybridization has become an alternative for drug resistance that lowers the risk of drug-drug adverse interactions. In this study, we synthesized a new series of hybrids by covalently linking the scaffolds of pyrano[2,3-c]pyrazole with 4-aminoquinoline via an ethyl linker. All synthesized hybrid molecules were evaluated through in vitro screenings against chloroquine-resistant (K1) and -sensitive (3D7) P. falciparum strains, respectively. Data from in vitro assessments showed that hybrid 4b displayed significant antiplasmodial activities against the 3D7 strain (EC50 = 0.0130 ± 0.0002 μM) and the K1 strain (EC50 = 0.02 ± 0.01 μM), with low cytotoxic effect against Vero mammalian cells. The high selectivity index value on the 3D7 strain (SI > 1000) and the K1 strain (SI > 800) and the low resistance index value from compound 4b suggested that the pharmacological effects of this compound were due to selective inhibition on the 3D7 and K1 strains. Molecular docking analysis also showed that 4b recorded the highest binding energy on P. falciparum lactate dehydrogenase. Thus, P. falciparum lactate dehydrogenase is considered a potential molecular target for the synthesized compound.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links