Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Adeshina AM, Hashim R, Khalid NE
    Interdiscip Sci, 2014 Sep;6(3):222-34.
    PMID: 25205500 DOI: 10.1007/s12539-013-0204-7
    Hepatocellular Carcinoma is the most common type of liver cancer having a strong relation with cirrhosis. Undoubtedly, cirrhosis may be caused by the virus infection of hepatitis B (HBV) and hepatitis C (HBC) or through alchoholism. However, even when cirrhosis has not been developed, patients with hepatitis viral infections are still at the risk of liver cancer. Apparently, among the numerous medical imaging techniques, Computed Tomography (CT) is the best in defining liver tumor borders. Unfortunately, these imaging techniques, including the CT procedures, usually rely on an appended application to reconstruct the generated 2-D slices to 3-D model. This may involve high performance computation, may be time-consuming or costly. Moreover, even with the outstanding performances of CT in defining the liver tumor boundaries, contrast between tumor tissues and the surrounding liver parenchyma is too low in CT slices. With such a close proxity in the tumor and the surrounding liver tissues, accurate characterization of liver tumor is a challenge. Previously, algorithms were developed to reveal abnormalities in brain's MRI datasets and CT abdominal pelvic, however, introducing a framework that could accurately characterize liver tumor and its surrounding tissues in CT datasets would go a long way in contributing to medical diagnosis and therapy planning of Hepatocellular Carcinoma. This paper proposes an Hepatocellular Carcinoma framework by extending the functionalities of SurLens Visualization System with an automatic liver tumor localization technique using Compute Unified Device Architecture (CUDA). The study was evaluated with liver CT datasets from the Imaging Science and Information Systems (ISIS) Center, the Georgetown University Medical Center. Significantly, visualization of liver CT datasets and the localization of the entangled tumor was achieved without prior datasets segmentation. Interestingly, the framework achieved remarkably good processing speed at a reasonably cheaper cost with an immediate reconstruction of the datasets and mapping of the tumor tissues within the surrounding liver parenchyma.
  2. Adeshina AM, Hashim R, Khalid NE, Abidin SZ
    Interdiscip Sci, 2013 Mar;5(1):23-36.
    PMID: 23605637 DOI: 10.1007/s12539-013-0155-z
    In the medical diagnosis and treatment planning, radiologists and surgeons rely heavily on the slices produced by medical imaging devices. Unfortunately, these image scanners could only present the 3-D human anatomical structure in 2-D. Traditionally, this requires medical professional concerned to study and analyze the 2-D images based on their expert experience. This is tedious, time consuming and prone to error; expecially when certain features are occluding the desired region of interest. Reconstruction procedures was earlier proposed to handle such situation. However, 3-D reconstruction system requires high performance computation and longer processing time. Integrating efficient reconstruction system into clinical procedures involves high resulting cost. Previously, brain's blood vessels reconstruction with MRA was achieved using SurLens Visualization System. However, adapting such system to other image modalities, applicable to the entire human anatomical structures, would be a meaningful contribution towards achieving a resourceful system for medical diagnosis and disease therapy. This paper attempts to adapt SurLens to possible visualisation of abnormalities in human anatomical structures using CT and MR images. The study was evaluated with brain MR images from the department of Surgery, University of North Carolina, United States and CT abdominal pelvic, from the Swedish National Infrastructure for Computing. The MR images contain around 109 datasets each of T1-FLASH, T2-Weighted, DTI and T1-MPRAGE. Significantly, visualization of human anatomical structure was achieved without prior segmentation. SurLens was adapted to visualize and display abnormalities, such as an indication of walderstrom's macroglobulinemia, stroke and penetrating brain injury in the human brain using Magentic Resonance (MR) images. Moreover, possible abnormalities in abdominal pelvic was also visualized using Computed Tomography (CT) slices. The study shows SurLens' functionality as a 3-D Multimodal Visualization System.
  3. Utami R, Khalid N, Sukari MA, Rahmani M, Abdul AB, Dachriyanus
    Pak J Pharm Sci, 2013 Mar;26(2):245-50.
    PMID: 23455191
    Elaeocarpus floribundus is higher plant that has been used as traditional medicine for treating several diseases. There is no previous report on phytochemicals and bioactivity studies of this species. In this investigation, triterpenoids friedelin, epifriedelanol and β-sitosterol were isolated from its leaves and stem bark. Determination of total phenolic content of methanolic extract of leaves and stem bark was carried out using Folin-Ciocalteu reagent. All extracts and isolated compounds were subjected to screening of antioxidant activity using DPPH free radical scavenging method and cytotoxic activities by MTT assay towards human T4 lymphoblastoid (CEM-SS) and human cervical (HeLa) cancer cells. In the total phenolic content determination, methanolic extract of leaves gave higher value of 503.08±16.71 mg GAE/g DW than stem bark with value of 161.5±24.81 mg GAE/g DW. Polar extracts of leaves and stem bark possessed promising antioxidant activity with methanol extract of stem bark exhibited strongest activity with IC50 value of 7.36±0.01 μg/ml. In the cytotoxic activity assay, only chloroform extract of leaves showed significant activity with IC50 value of 25.6±0.06 μg/ml against CEM-SS cancer cell, while friedelin and epifriedelanol were found to be active against the two cancer cells with IC50 values ranging from 3.54 to 11.45 μg/ml.
  4. Adeshina AM, Hashim R, Khalid NE, Abidin SZ
    Interdiscip Sci, 2012 Sep;4(3):161-72.
    PMID: 23292689 DOI: 10.1007/s12539-012-0132-y
    CT and MRI scans are widely used in medical diagnosis procedures, but they only produce 2-D images. However, the human anatomical structure, the abnormalities, tumors, tissues and organs are in 3-D. 2-D images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require doctors to use their expert experiences in the interpretation of the possible location, size or shape of the abnormalities, even for large datasets of enormous amount of slices. Previously, the concept of reconstructing 2-D images to 3-D was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This paper proposes a volume visualization framework using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft.NET environment for easy interoperability with other emerging revolutionary tools. The framework was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing around 109 MRA datasets. Uniquely, at a reasonably cheaper cost, our framework achieves immediate reconstruction and obvious mappings of the internal features of human brain, reliable enough for instantaneous locations of possible blockages in the brain blood vessels.
  5. Sathasivam H, Loh YM, Saw CL, Khalid N
    Gerodontology, 2017 Jun;34(2):276-279.
    PMID: 27384017 DOI: 10.1111/ger.12240
    OBJECTIVE: A case of oral metastatic follicular thyroid carcinoma is presented.

    BACKGROUND: Metastatic tumours are more frequent in older individuals and can be the only sign/symptom of an undiagnosed primary malignancy.

    CASE REPORT: A 69-year-old lady presented with an enlarging mandibular swelling. Incisional biopsy and imaging studies were suggestive of metastatic follicular thyroid carcinoma.

    CONCLUSION: Metastatic tumours should be considered in the differential diagnosis of mandibular swellings especially in older individuals.

  6. Yousuf R, Abdul Ghani SA, Abdul Khalid N, Leong CF
    Malays J Pathol, 2018 Apr;40(1):27-32.
    PMID: 29704381 MyJurnal
    INTRODUCTION: 'InTec Blood Grouping Test kit' using solid-phase technology is a new method which may be used at outdoor blood donation site or at bed side as an alternative to the conventional tile method in view of its stability at room temperature and fulfilled the criteria as point of care test. This study aimed to compare the efficiency of this solid phase method (InTec Blood Grouping Test Kit) with the conventional tile method in determining the ABO and RhD blood group of healthy donors.

    METHODS: A total of 760 voluntary donors who attended the Blood Bank, Penang Hospital or offsite blood donation campaigns from April to May 2014 were recruited. The ABO and RhD blood groups were determined by the conventional tile method and the solid phase method, in which the tube method was used as the gold standard.

    RESULTS: For ABO blood grouping, the tile method has shown 100% concordance results with the gold standard tube method, whereas the solid-phase method only showed concordance result for 754/760 samples (99.2%). Therefore, for ABO grouping, tile method has 100% sensitivity and specificity while the solid phase method has slightly lower sensitivity of 97.7% but both with good specificity of 100%. For RhD grouping, both the tile and solid phase methods have grouped one RhD positive specimen as negative each, thus giving the sensitivity and specificity of 99.9% and 100% for both methods respectively.

    CONCLUSION: The 'InTec Blood Grouping Test Kit' is suitable for offsite usage because of its simplicity and user friendliness. However, further improvement in adding the internal quality control may increase the test sensitivity and validity of the test results.

  7. Karim R, Tan YS, Singh P, Khalid N, Harikrishna JA
    Physiol Mol Biol Plants, 2018 Sep;24(5):741-751.
    PMID: 30150851 DOI: 10.1007/s12298-018-0566-8
    The process of somatic embryogenesis and plant regeneration involve changes in gene expression and have been associated with changes in DNA methylation. Here, we report the expression and DNA methylation patterns of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK), BABY BOOM (BBM), LEAFY COTYLEDON 2 (LEC2) and WUSCHEL (WUS) in meristematic block of newly emerged shoots from rhizome, embryogenic and non-embryogenic calli, prolonged cell suspension culture, ex vitro leaf, and in vitro leaf of regenerated plants of Boesenbergia rotunda. Among all seven samples, based on qRT-PCR, the highest level of expression of SERK, BBM and LEC2 was in embryogenic callus, while WUS was most highly expressed in meristematic block tissue followed by embryogenic callus. Relatively lower expression was observed in cell suspension culture and watery callus for SERK, LEC2 and WUS and in in vitro leaf for BBM. For gene specific methylation determined by bisulfite sequencing data, embryogenic callus samples had the lowest levels of DNA methylation at CG, CHG and CHH contexts of SERK, LEC2 and WUS. We observed negative correlation between DNA methylation at the CG and CHG contexts and the expression levels of SERK, BBM, LEC2 and WUS. Based on our results, we suggest that relatively higher expression and lower level of DNA methylation of SERK, BBM, LEC2 and WUS are associated with somatic embryogenesis and plant regeneration in B. rotunda.
  8. Mustafa Khalid N, Haron H, Shahar S, Fenech M
    Int J Environ Res Public Health, 2022 Nov 25;19(23).
    PMID: 36497797 DOI: 10.3390/ijerph192315722
    Micronutrient malnutrition is thought to play an important role in the cause of cognitive impairment and physical frailty. The purpose of this scoping review was to map current evidence on the association between micronutrient deficiency in blood and mild cognitive impairment, frailty, and cognitive frailty among older adults. The scoping review was conducted based on the 2005 methodological framework by Arksey and O'Malley. The search strategy for potential literature on micronutrient concentration in blood and cognitive frailty was retrieved based on the keywords using electronic databases (PubMed, Cochrane Library, Google Scholar, Ovid, and Science Direct) from January 2010 to December 2021. Gray literature was also included in the searches. A total of 4310 articles were retrieved and 43 articles were incorporated in the review. Findings revealed a trend of significant association between low levels of B vitamins (folate and vitamin B12), vitamin D, vitamin A, vitamin E, omega 3 fatty acid, and albumin, and high homocysteine levels in blood with an increased risk of mild cognitive impairment among older adults. The results also indicated that low vitamin D levels, albumin, and antioxidants (lutein and zeaxanthin) in blood were significantly associated with frailty among older adults, while β-cryptoxanthin and zeaxanthin in blood were inversely associated with the risk of cognitive frailty. Vitamin D and antioxidants seemed to be targeted nutrients for the prevention of cognitive frailty. In conclusion, a wide range of micronutrient deficiency was associated with either mild cognitive impairment or frailty; however, little evidence exists on the dual impairment, i.e., cognitive frailty. This scoping review can serve as preliminary evidence for the association between micronutrient deficiency in blood and mild cognitive impairment, frailty, and cognitive frailty among older adults and prove the relevancy of the topic for future systematic reviews.
  9. Liu Y, Abdul Karim Z, Khalid N, Said FF
    J Environ Public Health, 2022;2022:5635853.
    PMID: 35719856 DOI: 10.1155/2022/5635853
    Wind is a renewable energy source. Overall, using wind to produce energy has fewer effects on the environment than many other energy sources. Wind and solar energy provide public health and environmental benefits to the social. Wind turbines may also reduce the amount of electricity generation from fossil fuels, which results in lower total air pollution and carbon dioxide emissions. In order to better optimize the effect of social energy economic management and facilitate the multiobjective decision making of coordinated development of energy and socioeconomic environment, a modeling and analysis method of economic benefits of wind power generation based on deep learning is proposed. In this paper, based on the principle of deep learning, the evaluation indicators of wind power economic benefits are excavated, a scientific and reasonable economic benefit evaluation system is constructed, a wind power economic benefit analysis model supported by public management is constructed, and the steps of wind power economic benefit analysis are simplified. It is concluded that the modeling and analysis method of wind power economic benefits based on deep learning has high practicability in the actual application process, which is convenient for the prediction and analysis of energy demand for social and economic development.
  10. Jalil M, Annuar MS, Tan BC, Khalid N
    PMID: 25767555 DOI: 10.1155/2015/757514
    Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.
  11. Othman R, Kiat TS, Khalid N, Yusof R, Newhouse EI, Newhouse JS, et al.
    J Chem Inf Model, 2008 Aug;48(8):1582-91.
    PMID: 18656912 DOI: 10.1021/ci700388k
    A group of flavanones and their chalcones, isolated from Boesenbergia rotunda L., were previously reported to show varying degrees of noncompetitive inhibitory activities toward Dengue virus type 2 (Den2) protease. Results obtained from automated docking studies are in agreement with experimental data in which the ligands were shown to bind to sites other than the active site of the protease. The calculated K(i) values are very small, indicating that the ligands bind quite well to the allosteric binding site. Greater inhibition by pinostrobin, compared to the other compounds, can be explained by H-bonding interaction with the backbone carbonyl of Lys74, which is bonded to Asp75 (one of the catalytic triad residues). In addition, structure-activity relationship analysis yields structural information that may be useful for designing more effective therapeutic drugs against dengue virus infections.
  12. Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA
    PLoS One, 2015;10(5):e0127526.
    PMID: 25993649 DOI: 10.1371/journal.pone.0127526
    Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.
  13. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P  0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

  14. Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA
    Bioorg Med Chem Lett, 2006 Jun 15;16(12):3337-40.
    PMID: 16621533
    Boesenbergia rotunda (L.) cyclohexenyl chalcone derivatives, 4-hydroxypanduratin A and panduratin A, showed good competitive inhibitory activities towards dengue 2 virus NS3 protease with the Ki values of 21 and 25 microM, respectively, whilst those of pinostrobin and cardamonin were observed to be non-competitive. NMR and GCMS spectroscopic data formed the basis of assignment of structures of the six compounds isolated.
  15. Md Noh MF, Gunasegavan RD, Mustafa Khalid N, Balasubramaniam V, Mustar S, Abd Rashed A
    Molecules, 2020 Oct 06;25(19).
    PMID: 33036314 DOI: 10.3390/molecules25194567
    Food composition database (FCD) provides the nutritional composition of foods. Reliable and up-to date FCD is important in many aspects of nutrition, dietetics, health, food science, biodiversity, plant breeding, food industry, trade and food regulation. FCD has been used extensively in nutrition labelling, nutritional analysis, research, regulation, national food and nutrition policy. The choice of method for the analysis of samples for FCD often depends on detection capability, along with ease of use, speed of analysis and low cost. Sample preparation is the most critical stage in analytical method development. Samples can be prepared using numerous techniques; however it should be applicable for a wide range of analytes and sample matrices. There are quite a number of significant improvements on sample preparation techniques in various food matrices for specific analytes highlighted in the literatures. Improvements on the technology used for the analysis of samples by specific instrumentation could provide an alternative to the analyst to choose for their laboratory requirement. This review provides the reader with an overview of recent techniques that can be used for sample preparation and instrumentation for food analysis which can provide wide options to the analysts in providing data to their FCD.
  16. Abd-Aziz N, Tan BC, Rejab NA, Othman RY, Khalid N
    Mol Biotechnol, 2020 Apr;62(4):240-251.
    PMID: 32108286 DOI: 10.1007/s12033-020-00242-2
    In the past decade, interest in the production of recombinant pharmaceutical proteins in plants has tremendously progressed because plants do not harbor mammalian viruses, are economically competitive, easily scalable, and capable of carrying out complex post-translational modifications required for recombinant pharmaceutical proteins. Mucuna bracteata is an essential perennial cover crop species widely planted as an underground cover in oil palm and rubber plantations. As a legume, they have high biomass, thrive in its habitat, and can fix nitrogen. Thus, M. bracteata is a cost-efficient crop that shows ideal characteristics as a platform for mass production of recombinant protein. In this study, we established a new platform for the transient production of a recombinant protein in M. bracteata via vacuum-assisted agro-infiltration. Five-week-old M. bracteata plants were vacuum infiltrated with Agrobacterium tumefaciens harboring a plasmid that encodes for an anti-toxoplasma immunoglobulin (IgG) under different parameters, including trifoliate leaf positional effects, days to harvest post-infiltration, and the Agrobacterium strain used. Our results showed that vacuum infiltration of M. bracteata plant with A. tumefaciens strain GV3101 produced the highest concentration of heterologous protein in its bottom trifoliate leaf at 2 days post-infiltration. The purified anti-toxoplasma IgG was then analyzed using Western blot and ELISA. It was demonstrated that, while structural heterogeneity existed in the purified anti-toxoplasma IgG from M. bracteata, its transient expression level was two-fold higher than the model platform, Nicotiana benthamiana. This study has laid the foundation towards establishing M. bracteata as a potential platform for the production of recombinant pharmaceutical protein.
  17. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    PeerJ, 2020;8:e9094.
    PMID: 32391211 DOI: 10.7717/peerj.9094
    Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
  18. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    Mol Biotechnol, 2021 Apr;63(4):316-326.
    PMID: 33565047 DOI: 10.1007/s12033-021-00304-z
    Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.
  19. Ali MH, Suleiman N, Khalid N, Tan KH, Tseng ML, Kumar M
    Trends Food Sci Technol, 2021 Mar;109:94-102.
    PMID: 34728899 DOI: 10.1016/j.tifs.2021.01.021
    BACKGROUND: The ability of small- and medium-sized enterprises in the food industry (FSMEs) in cultivating resilience against the COVID-19 pandemic is vital food security. However, there is limited supply chain resilience literature to guide FSMEs in overcoming disruptions caused by pandemic.

    SCOPE AND APPROACH: This review aims to provide a broad view of SCRes reactive strategies for FSMEs in dealing with crises in the context of COVID-19. Attention is given to the literature on resilience in other types of supply chain and situated in the context of food settings. The factors are monitored or controlled to contribute to FSME resiliency.Key findings and conclusion: Four quadrants, i.e., (1) rapid with low cost, (2) rapid with high cost, (3) slow with low cost and (4) slow with high cost, are offered based on the limitations and the time needed to react, and the strategies of each quadrant are explained in depth. This review also provides a better understanding of and guidance on reactive strategies for SCRes as options for FSMEs in dealing with the COVID-19 pandemic. This review suggests future directions as extensions based on the logical flow of this review.

  20. Tan BC, Tan SK, Wong SM, Ata N, Rahman NA, Khalid N
    PMID: 25883671 DOI: 10.1155/2015/451870
    The distribution patterns of flavonoids and cyclohexenyl chalcone derivatives in conventional propagated (CP) and in vitro-derived (CPA) field-grown plants of an important medicinal ginger, Boesenbergia rotunda, are described. A total of eight compounds were extracted from six organs (rootlet, rhizome, shoot base, maroon stem, stalk, and leaf) of the CP and CPA plants. Five major chromatographic peaks, namely, alpinetin, pinocembrin, pinostrobin, 4-hydroxypanduratin A, and panduratin A, were consistently observed by high performance liquid chromatography. Nonaerial organs had higher levels of flavonoids than the aerial ones for all types of samples. Among the compounds detected, pinostrobin and 4-hydroxypanduratin A were the most abundant flavonoid and cyclohexenyl chalcone derivative, respectively. The distribution and abundance of the bioactive compounds suggested that the shoot base could be more potentially useful for medicinal application than other organs of the plant and may be the site of storage or occurrence of biosynthetic enzymatic activities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links