Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Khor CY, Khoo BY
    Biotechnol Lett, 2020 Aug;42(8):1581-1595.
    PMID: 32385743 DOI: 10.1007/s10529-020-02904-2
    OBJECTIVE: This study aimed to examine the metabolising effect of chrysin by investigating the mRNA expression levels of PPARα and its related cellular mechanisms in HCT116 cells.

    RESULTS: The mRNA expression of PPARα was significantly induced in HCT116 cells following treatment with chrysin for 36 h, but the mRNA expression of PPARα was inhibited, when the cells were treated with a combination of chrysin and MK886 (PPARα inhibitor). This phenomenon proved that the incorporation of MK886 lowers the expression levels of PPARα, thus enabling us to study the function of PPARα. The cell population of the G0/G1 phase significantly increased in chrysin-treated cells, which was accompanied by a decrease in the percentage of S phase cell population after 12 h of treatment. However, treatments of HCT116 cells with chrysin only or a combination of chrysin and MK886 did not show the opposite situation in the G0/G1 and S phase cell populations, indicating that the expression of PPARα may not be associated with the cell cycle in the treated cells. The migration rate in chrysin-treated HCT116 cells was reduced significantly after 24 and 36 h of treatments. However, the activity was revived, when the expression of PPARα was inhibited, indicating that the migration activity of chrysin-treated cells is likely correlated with the expression of PPARα. Comparison of the CYP2S1 and CYP1B1 mRNA expression in chrysin only treated, and a combination of chrysin and MK886-treated HCT116 cells for 24 and 36 h showed a significant difference in the expression levels, indicating that PPARα inhibitor could also modify the expression of CYP2S1 and CYP1B1.

    CONCLUSION: The study indicates that PPARα may play an essential role in regulating the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated colorectal cancer cells.

  2. Rahumatullah A, Khoo BY, Noordin R
    Trop Biomed, 2015 Jun;32(2):376-85.
    PMID: 26691266 MyJurnal
    Toxoplasma gondii is an important pathogen in veterinary and human medicine. In this study, a new multiplex TaqMan real-time PCR for detection of T. gondii DNA was developed. This assay consisted of new sets of primers and probes which targeted B1 gene and ITS-1 region of T. gondii, with Vibrio cholera gene as internal control. The B1 gene primers were designed to detect T. gondii RH strain, while the ITS-1 region primers detected most T. gondii strains. Specificity test using common protozoal and bacterial DNA revealed that the assay was very specific to T. gondii. Standard curves constructed using human body fluids spiked with T. gondii (RH and ME49 strains) showed that the sensitivity of the assay was one parasite, with R² value of 0.975 to 0.999 and efficiency of 97% to 99% for all types of samples. The assay performed on DNA extracted from tissues of mice infected with T. gondii showed that liver contained the highest parasite load for both strains of T. gondii. The multiplex real-time PCR developed in this study would be potentially useful for detection of T. gondii in human and animal samples.
  3. Lim SK, Khoo BY
    Oncol Lett, 2021 Nov;22(5):785.
    PMID: 34594426 DOI: 10.3892/ol.2021.13046
    There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self-renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC-based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
  4. Hew CS, Khoo BY, Gam LH
    PLoS One, 2013;8(7):e68524.
    PMID: 23874655 DOI: 10.1371/journal.pone.0068524
    Gynura procumbens (Lour.) Merr. belongs to the Asteraceae Family. The plant is a well-known traditional herb in South East Asia and it is widely used to treat inflammation, kidney discomfort, high cholesterol level, diabetic, cancer and high blood pressure. Our earlier study showed the presence of valuable plant defense proteins, such as peroxidase, thaumatin-like proteins and miraculin in the leaf of G. procumbens. However, the effects of these defense proteins on cancers have never been determined previously. In the present study, we investigated the bioactivity of gel filtration fractionated proteins of G. procumbens leaf extract. The active protein fraction, SN-F11/12, was found to inhibit the growth of a breast cancer cell line, MDA-MB-231, at an EC50 value of 3.8 µg/mL. The mRNA expressions of proliferation markers, Ki67 and PCNA, were reduced significantly in the MDA-MB-23 cells treated with SN-F11/12. The expression of invasion marker, CCL2, was also found reduced in the treated MDA-MB-231 cells. All these findings highlight the anti-cancer property of SN-F11/12, therefore, the proteins in this fraction can be a potential chemotherapeutic agent for breast cancer treatment.
  5. Rahumatullah A, Khoo BY, Noordin R
    Exp Parasitol, 2012 Jun;131(2):231-8.
    PMID: 22561042 DOI: 10.1016/j.exppara.2012.04.009
    Molecular methods are used increasingly for the detection of Toxoplasma gondii infection. This study developed a rapid, sensitive, and specific conventional triplex PCR for the detection of the B1 gene and ITS1 region of T. gondii using newly designed primers and an internal control based on the Vibrio cholerae HemM gene. The annealing temperature and concentrations of the primers, MgCl(2), and dNTPs were optimized. Two sets of primers (set 1 and 2) were tested, which contained different segments of the T. gondii B1 gene, 529 repeat region and ITS1 region. A series of sensitivity tests were performed using parasite DNA, whole parasites, and spiked human body fluids. Specificity tests were performed using DNA from common protozoa and bacteria. The newly developed assay based on set 2 primers was found to be specific and sensitive. The test was capable of detecting as little as 10 pg T. gondii DNA, 10(4) tachyzoites in spiked body fluids, and T. gondii DNA in the organ tissues of experimentally infected mice. The assay developed in this study will be useful for the laboratory detection of T. gondii infection.
  6. Khoo BY, Chua SL, Balaram P
    Int J Mol Sci, 2010;11(5):2188-99.
    PMID: 20559509 DOI: 10.3390/ijms11052188
    Chrysin is a natural flavonoid currently under investigation due to its important biological anti-cancer properties. In most of the cancer cells tested, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells. Moreover, structure-activity relationships have revealed that the chemical structure of chrysin meets the key structural requirements of flavonoids for potent cytotoxicity in leukemia cells. It is possible that combination therapy or modified chrysin could be more potent than single-agent use or administration of unmodified chrysin. This study may help to develop ways of improving the effectiveness of chrysin in the treatment of leukemia and other human cancers in vitro.
  7. Nadarajan K, Balaram P, Khoo BY
    Cytotechnology, 2016 Oct;68(5):1771-87.
    PMID: 26754842 DOI: 10.1007/s10616-015-9930-5
    The goal of this study was to determine the effects of PGZ and MK886 on the mRNA expression of PPARα and other associated genes in MDA-MB-231 cells, and the biological mechanisms induced by both drugs were also assessed. The levels of PPARα mRNA expression in PGZ-treated and MK886-treated MDA-MB-231 cells were determined using real-time PCR; the growth inhibitory effects of PGZ and MK886 were determined using the trypan blue exclusion assay; the induction of apoptosis by PGZ and MK886 was determined using DNA fragmentation assay and real-time PCR; and the invasion of PGZ-treated and MK886-treated MDA-MB-231 cells was determined using the wound healing and transwell migration assays. In addition, we correlated the expression of PPARα mRNA with other genes, including PPARγ, FGF4 and 5LOX, in drug-treated MDA-MB-231 cells. Our results demonstrated that the treatment of MDA-MB-231 cells with PGZ increased the expression of PPARα/γ mRNA and that this expression could be inhibited by treatment with MK886. Both drugs reduced the viability of MDA-MB-231 cells independently of PPARα/γ mRNA expression but did not induce apoptosis. The wound caused by invasion was not healed by PGZ-treated MDA-MB-231 cells, but it was healed by MK886-treated cancer cells, indicating that the reduction of invasion in PGZ-treated MDA-MB-231 cells was eliminated by treatment with MK886, and this finding was validated by the transwell migration assay. This phenomenon might also be associated with the expression of PPARα/γ, FGF4 and 5LOX mRNA in the treated cancer cells. This study provides useful information regarding the mRNA expression levels of PPARα and other related genes in MDA-MB-231 cells. These genes could be attractive targets for reducing the invasion of breast cancer.
  8. Chew AL, Tan WY, Khoo BY
    Biomed Rep, 2013 Mar;1(2):185-192.
    PMID: 24648916
    Apart from their major function in the coordination of leukocyte recruitment, chemokines, in cooperation with their receptors, have been implicated in the progression of various diseases including different types of cancer, affecting survival, proliferation and metastasis. A complex network of chemokines and receptors exists in the tumor microenvironment and affects tumor development in various ways where chemokines activate typical signalling pathways by binding to the respective receptors. The identification and characterization of a group of atypical chemokine receptors [D6, Duffy antigen receptor for chemokines (DARC), ChemoCentryx chemokine receptor (CCX-CKR) and CXCR7] which appear to use unique biochemical properties to regulate the biological activities of these chemokines, is useful in the effort to therapeutically manipulate chemokines in a broad spectrum of diseases in which these chemokines play a critical role. The aim of this review was to investigate the combinatorial effect of two reported atypical chemokine receptors, D6 and DARC, on breast cancer cell invasion to understand their role and therapeutic potential in cancer treatment. In this regard, findings of the present review should be confirmed via the construction of recombinant D6 and DARC clones as well as the expression of the respective recombinant proteins using the Pichia pastoris (P. pastoris) expression system is to be performed in a future study in order to support findings of the current review.
  9. Saadatnia G, Haj Ghani H, Khoo BY, Maimunah A, Rahmah N
    Trop Biomed, 2010 Apr;27(1):125-30.
    PMID: 20562822
    In vitro culture of Toxoplasma gondii can provide tachyzoites which are active, viable and with desirable purity. Thus the aim of this study was to optimize the cell culture method for T. gondii propagation to obtain a consistent source of parasites with maximum yield and viability, but minimum host cell contamination for use in production of excretory-secretory antigen. Tachyzoites with seed counts of 1x10(6), 1x10(7) and 1x10(8) harvested from infected mice were added to VERO cells of different degrees of confluence, namely 50%, 85% and 100%, and examined periodically using an inverted microscope. When the maximum release of the tachyzoites was observed from the host cells, the culture supernatant was removed and the tachyzoites harvested. Using a Neubauer chamber, the percentages of viable tachyzoites and host cell contamination were determined using trypan blue stain. Parameters that gave the best yield and purity of viable tachyzoites were found to be as follows: VERO cells at 85% confluence in DMEM medium and inoculum comprising 1x10(7) tachyzoites. After about 3 days post infection, the tachyzoites multiplied 78x, with a yield of ~7.8x10(8) per flask, 99% viability and 3% host cell contamination. This study has successfully optimized the method of propagation of T. gondii tachyzoites in VERO cells which produce parasites with high yield, purity and viability.
  10. Ong CY, Abdalkareem EA, Khoo BY
    Mol Biol Rep, 2022 Feb;49(2):1529-1535.
    PMID: 34981335 DOI: 10.1007/s11033-021-07006-4
    Infection processes induce various soluble factors that are carcinogens in humans; therefore, research into the soluble factors of chronic disease released from cells that have been infected with parasites is warranted. Parasitic infections in host cells release high levels of IFNγ. Studies have hypothesised that parasitosis-associated carcinogenesis might be analogous to colorectal cancers developed from inflammatory bowel diseases, whereby various cytokines and chemokines are secreted during chronic inflammation. IL-18 and IL-21 are other factors that might be involved in the development of colorectal cancer in schistosomiasis patients and patients with other infections. IL-21 has profound effects on tumour growth and immunosurveillance of colitis-associated tumourigenesis, thereby emphasising its involvement in the pathogenesis of colorectal cancer. The prominent role of IL-21 in antitumour effects greatly depends on the enhanced cytolytic activity of NK cells and the pathogenic role of IL-21, which is often associated with enhanced risks of cancer and chronic inflammatory processes. As IL-15 is also related to chronic disease, it is believed to also play a role in the antitumour effect of colorectal carcinogenesis. IL-15 generates and maintains long-term CD8+ T cell immunity against T. gondii to control the infection of intracellular pathogens. The lack of IL-15 in mice contributes to the downregulation of the IFNγ-producing CD4+ T cell response against acute T. gondii infection. IL-15 induces hyperplasia and supports the progressive growth of colon cancer via multiple functions. The limited role of IL-15 in the development of NK and CD8+ T cells suggests that there may be other cytokines compensating for the loss of the IL-15 gene.
  11. Khoo BY, Miswan N, Balaram P, Nadarajan K, Elstner E
    Int J Mol Sci, 2012;13(5):5607-27.
    PMID: 22754319 DOI: 10.3390/ijms13055607
    In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.
  12. Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):901-8.
    PMID: 22265020 DOI: 10.1016/j.ultsonch.2011.12.018
    The aim of this study was to evaluate the effect of ultrasound on the intestinal adherence ability, cell growth, and cholesterol removal ability of parent cells and subsequent passages of Lactobacillus fermentum FTDC 1311. Ultrasound significantly decreased the intestinal adherence ability of treated parent cells compared to that of the control by 11.32% (P<0.05), which may be due to the protein denaturation upon local heating. Growth of treated parent cells also decreased by 4.45% (P<0.05) immediately upon ultrasound (0-4h) and showed an increase (P<0.05) in the viability by 2.18-2.34% during the later stage of fermentation (12-20 h) compared to that of the control. In addition, an increase (P<0.05) in assimilation of cholesterol (>9.74%) was also observed for treated parent cells compared to that of the control, accompanied by increased (P<0.05) incorporation of cholesterol into the cellular membrane. This was supported by the increased ratio of membrane cholesterol:phospholipids (C:P), saturation of cholesterol in the apolar regions, upper phospholipids regions, and polar regions of membrane phospholipids of parent cells compared to that of the control (P<0.05). However, such traits were not inherited by the subsequent passages of treated cells (first, second, and third passages). Our data suggested that ultrasound treatment could be used to improve cholesterol removal ability of parent cells without inducing permanent damage/defects on treated cells of subsequent passages.
  13. Chua SL, See Too WC, Khoo BY, Few LL
    Cytotechnology, 2011 Dec;63(6):645-54.
    PMID: 21850463 DOI: 10.1007/s10616-011-9383-4
    Relative quantification of in vitro gene expression using real-time PCR requires stably expressed reference gene for normalisation. In this study, total RNA from MCF7, HCT116 and HepG2 cells were extracted and converted to cDNA using commercially available kit, and real-time PCR was then performed to analyse the expression levels of twelve reference genes to select the most ideal reference gene for accurate normalisation in gene expression study. geNorm and NormFinder software were used to analyse the stabilities of the reference genes, which showed a wide range of C(t) values. The geNorm analysis showed the following ranking for stability of genes: UBC, YWHAZ > RPLP > TBP > ACTB > HPRT1 > PPIA > GAPDH > GUSB > B2M > TUBB > RRN18S. A similar ranking of reference genes was obtained by NormFinder, and the four most stable reference genes were identical using both approaches. UBC and YWHAZ were proposed to be the two most suitable reference genes based on the above analyses. To further assess the stabilities of the UBC and YWHAZ in a formal experiment, MCF7, HCT116 and HepG2 cell lines were subjected to treatments with 5-aza-dC and TSA. Both UBC and YWHAZ exhibited stable expression levels across control and treatment groups. Therefore, we propose that UBC and YWHAZ are the two most suitable reference genes for our gene expression studies using MCF7, HCT116 and HepG2 cell lines.
  14. Abdalkareem EA, Ong CY, Lim BH, Khoo BY
    Cytotechnology, 2018 Oct;70(5):1363-1374.
    PMID: 29802489 DOI: 10.1007/s10616-018-0228-2
    The interleukin-21 (IL-21) protein was found to be expressed at an elevated level in clinical samples of colorectal cancer patients without or with a parasitic infection that were collected from Sudan in our previous study. The IL-21 gene in HT29 and HCT116 cells was then correlated to cell proliferation and cell migration, as well as the cellular mechanisms associated with gene expressions in our present study. Our results demonstrated that silencing the IL-21 gene in HCT116 cells increased the cytotoxic level and fibroblast growth factor-4 (FGF4) mRNA expression in the cancer cells. Moreover, specific gene silencing reduced the migration of cancer cells compared to non-silenced cancer cells. These events were not observed in IL-21-silenced HT29 cells. Neutralizing FGF4 in conditioned medium of IL-21-silenced HCT116 cells further increased the cytotoxic level and restored the migratory activity of HCT116 cells in the culture compared to silencing the IL-21 gene alone in the cancer cells. Our results indicate the importance of both silencing the IL-21 gene and co-expression of the FGF4 protein in HCT116 cells, which pave the way for the discovery of important factors to be used as biomarkers for the design of drugs or cost-effective supplements to effectively treat the patients having infectious disease and HCT116 cells of colorectal cancer simultaneously in the future.
  15. Khoo BY, Samian MR, Najimudin N, Tengku Muhammad TS
    PMID: 12524031
    The coding region of guinea pig peroxisome proliferator activated receptor gamma1 (gpPPARgamma1) cDNA was successfully cloned from adipose tissue by reverse transcription polymerase chain reaction (RT-PCR) using the designated primers based on the conserved regions of the other mammalian PPARgamma1 sequence. From RT-PCR, a combination of three cDNA fragments that comprised of the full length coding region PPARgamma1 cDNA gene were amplified, with the size of 498, 550 and 557 bp, respectively. All three fragments were then successfully assembled by utilising the internal restriction sites present at the overlapping regions to give rise to the full-length coding region of gpPPARgamma1 with the size of 1428 bp and consisting of 475 amino acids. Guinea pig PPARgamma1 is highly conserved with those of other species at protein and nucleotide levels. Gene expression studies showed that gpPPARgamma mRNA was predominantly expressed in adipose tissue followed by lung and spleen. However, at the protein level, PPARgamma was also found to be expressed in skeletal muscle.
  16. Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT
    J Microbiol Biotechnol, 2012 Jul;22(7):981-9.
    PMID: 22580318
    This study aimed to evaluate the effects of electroporation on the cell growth, cholesterol removal, and adherence abilities of L. acidophilus BT 1088 and their subsequent passages. The growth of electroporated parent cells increased (P<0.05) by 4.49-21.25% compared with that of the control. This may be attributed to the alteration of cellular membrane. However, growth of first, second, and third passages of treated cells was comparable with that of the control, which may be attributed to the resealing of transient pores on the cellular membrane. Electroporation also increased (P<0.05) assimilation of cholesterol by treated parent cells (>185.40%) and first passage (>21.72%) compared with that of the control. Meanwhile, incorporation of cholesterol into the cellular membrane was also increased (P<0.05) in the treated parent cells (>108.33%) and first passage (>26.67%), accompanied by increased ratio of cholesterol:phospholipids (C:P) in these passages. Such increased ratio was also supported by increased enrichment of cholesterol in the hydrophilic heads, hydrophobic tails, and the interface regions of the membrane phospholipids of both parent and first passage cells compared with that of the control. However, such traits were not inherited by the subsequent second and third passages. Parent cells also showed decreased intestinal adherence ability (P<0.05; decreased by 1.45%) compared with that of the control, without inheritance by subsequent passages of treated cells. Our data suggest that electoporation could be a potential physical treatment to enhance the cholesterol removal ability of lactobacilli that was inherited by the first passage of treated cells without affecting their intestinal adherence ability.
  17. Khoo BY, Nadarajan K, Shim SY, Miswan N, Zang CB, Possinger K, et al.
    Mol Med Rep, 2016 Apr;13(4):3406-14.
    PMID: 26934829 DOI: 10.3892/mmr.2016.4959
    The present study aimed to investigate the effects of bone marrow‑derived mesenchymal stem cells (BMSCs) that had been pretreated with pioglitazone and/or rosiglitazone on the growth and proliferation rate of MCF‑7 cells. The adhesive interaction between the BMSCs and the MCF‑7 cancer cells revealed that the pretreatment of BMSCs with a combination of two types of thiazolidinedione drug reduced the growth and proliferation rate of the MCF‑7 cells. The proliferation rate of the MCF‑7 cells could also be reduced by the non‑adhesive interaction of the cancer cells with BMSCs pretreated with pioglitazone and/or rosiglitazone. The growth and proliferation rate reduction effects on the MCF‑7 cells may be attributed to the reduction in the protein level of fibroblast growth factor 4 (FGF4) in the conditioned medium of the pretreated BMSCs. The evidence that the low protein level of FGF4 in the conditioned medium of the pretreated BMSCs perturbed the proliferation rate of the MCF‑7 cells by reducing the levels of Ki‑67 and proliferating cell nuclear antigen transcripts in the cancer cells was also demonstrated in the present study using a FGF4‑neutralizing antibody. All the above findings demonstrate that future studies on the correlation between FGF4 and pretreated BMSCs would be beneficial.
  18. Xin J, Wan Mahtar WNA, Siah PC, Miswan N, Khoo BY
    Mol Med Rep, 2019 Jun;19(6):5368-5376.
    PMID: 31059050 DOI: 10.3892/mmr.2019.10201
    Cancer chemotherapy possesses high toxicity, particularly when a higher concentration of drugs is administered to patients. Therefore, searching for more effective compounds to reduce the toxicity of treatments, while still producing similar effects as current chemotherapy regimens, is required. Currently, the search for potential anticancer agents involves a random, inaccurate process with strategic deficits and a lack of specific targets. For this reason, the initial in vitro high‑throughput steps in the screening process should be reviewed for rapid identification of the compounds that may serve as anticancer agents. The present study aimed to investigate the potential use of the Pichia pastoris strain SMD1168H expressing DNA topoisomerase I (SMD1168H‑TOPOI) in a yeast‑based assay for screening potential anticancer agents. The cell density that indicated the growth of the recombinant yeast without treatment was first measured by spectrophotometry. Subsequently, the effects of glutamate (agonist) and camptothecin (antagonist) on the recombinant yeast cell density were investigated using the same approach, and finally, the effect of camptothecin on various cell lines was determined and compared with its effect on recombinant yeast. The current study demonstrated that growth was enhanced in SMD1168H‑TOPOI as compared with that in SMD1168H. Glutamate also enhanced the growth of the SMD1168H; however, the growth effect was not enhanced in SMD1168H‑TOPOI treated with glutamate. By contrast, camptothecin caused only lower cell density and growth throughout the treatment of SMD1168H‑TOPOI. The findings of the current study indicated that SMD1168H‑TOPOI has similar characteristics to MDA‑MB‑231 cells; therefore, it can be used in a yeast‑based assay to screen for more effective compounds that may inhibit the growth of highly metastatic breast cancer cells.
  19. Khurshid Ahmed NA, Lim SK, Pandian GN, Sugiyama H, Lee CY, Khoo BY, et al.
    Mol Med Rep, 2020 Nov;22(5):3645-3658.
    PMID: 32901880 DOI: 10.3892/mmr.2020.11485
    Eurycoma (E.) longifolia Jack (Tongkat Ali) is a widely applied medicine that has been reported to boost serum testosterone and increase muscle mass. However, its actual biological targets and effects on an in vitro level remain poorly understood. Therefore, the present study aimed to investigate the effects of a standardised E. longifolia extract (F2) on the growth and its associated gene expression profile in mouse Leydig cells. F2, even at lower doses, was found to induce a high level of testosterone by ELISA. The level was as high as the levels induced by eurycomanone and formestane in Leydig cells. However, Leydig cells treated with F2 demonstrated reduced viability, which was likely due to the diminished cell population at the G0/G1 phase and increased cell population arrested at the S phase in the cell cycle, as assessed by MTT assay and flow cytometry, respectively. Cell viability was revived when the treatment time‑point was prolonged to 96 h. Genome‑wide gene analysis by reverse transcription‑quantitative PCR of F2‑treated Leydig cells at 72 h, when the cell growth was not revived, and 96 h, when the cell growth had started to revive, revealed cyclin‑dependent kinase‑like 2 (CDKL2) to be a potential target in regulating the viability of F2‑treated Leydig cells. Functional analysis, as analysed using GeneMANIA Cytoscape program v.3.6.0 (https://genemania.org/), further suggested that CDKL2 could act in concert with Casitas B‑lineage lymphoma and sphingosine kinase 1 interactor‑A‑kinase anchoring protein domain‑containing genes to regulate the viability of F2‑treated Leydig cells. The findings of the present study provide new insights regarding the potential molecular targets associated with the biological effect of E. longifolia extract on cell growth, particularly on the cell cycle, which could aid in enhancing the bioefficacy and reducing the toxicity of this natural product in the future.
  20. Yang KL, Khoo BY, Ong MT, Yoong ICK, Sreeramanan S
    Breast Cancer, 2021 Jan;28(1):60-66.
    PMID: 32654094 DOI: 10.1007/s12282-020-01128-6
    LED red light has been reported to have many health benefits. The present study was conducted to characterise anti-proliferation properties of four LED red light wavelengths (615, 630, 660 and 730 nm) against non-triple negative (MCF-7) and triple negative (MDA-MB-231) breast cancer-origin cell lines. It has been shown by MTT assay that at 24 h post-exposure time point, only LED red light with wavelength 660 nm possessed anti-proliferative effects against both cell lines with 40% reduction of cell viability. The morphology of LED 660 nm irradiated cells was found flatten with enlarged cell size, typical characteristic of cell senescent. Indications of autophagy activities following the irradiation have been provided by acridine orange staining, showing high presence of acidic vesicle organelles (AVOs). In addition, high LC3-II/LC3-I to LC3 ratio has been observed qualitatively in Western blot analysis indicating an increase number of autophagosomes formation in LED 660 nm irradiated cells compared to control cells. Electron dense bodies observed in these cells under TEM micrographs provided additional support to the above observations, leading to the conclusion that LED 660 nm irradiation promoted anti-proliferative activities through autophagy in breast cancer-origin cells. These findings have suggested that LED 660 nm might be developed and be employed as an alternative cancer treatment method in future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links