MATERIALS AND METHODS: A total of 260 patients were recruited in this retrospective cross-sectional analysis. Clinical data, including treatment regimens and outcome, were collected and analysed.
RESULTS: A total of 211 patients were diagnosed with haemophilia A (HA) (severe disease, 72.5%) and 49 patients had haemophilia B (HB) (severe disease, 65.3%). The median age was 31 (IQR;2-84) years. Majority of the patients had at least one episode of musculoskeletal bleeding since diagnosis. The mean annual bleeding event (ABE) was 4.91 (SD±6.07) in 2018. Target joints were identified in 80.4% of the patients. Chronic arthropathy and synovitis collectively accounted for more than half of the musculoskeletal complications. 30.1% of the patients had contracted hepatitis C with less than half received treatment. Thirty-one patients (16.8%) with severe haemophilia developed inhibitor and 12 patients successfully underwent immune tolerance induction. More than three-quarters of the severe haemophilia patients were treated with factor concentrate prophylaxis. The mean prophylaxis dose for HA and HB were 41.3 (SD±19.1) and 48.6 (SD±21.5) IU/kg/week, respectively. In patients with severe disease, prophylaxis significantly reduced the ABE (5.45,9.03;p=0.005).
CONCLUSION: The importance of utilising a low to moderate dose regimen as prophylaxis in haemophilic patients is highlighted in our study. Future studies should include QOL assessment will further improve the management in haemophilia.
METHODS: It was a retrospective study carried out in a Level 1 arthroplasty and trauma centre. 23 patients (17 males, 6 females) with average age of 50.1 years (range, 36-68 years) with displaced acetabular fracture treated with combined incisions and plate-cable systems were included. There were 3 elementary and 18 associated fractures according to Letournel classification. Average follow-up was 23.5 months (range, 12-38.7 months). Mean operation time was 160min (range: 75-320min). Functional scores were evaluated using Harris Hip Score (HHS) whilst reduction was assessed by Matta criteria. Any displacement of reduction, osteoarthritis, heterotopic ossification, and other complications was recorded.
RESULT: 65.2% (15/23) of the patients obtained excellent HHS and 21.7% (5/23) had good HHS. There were 12 anatomical, 6 imperfect, and 5 poor reductions. No displacement was recorded in final follow-up. Complications documented: three lateral femoral cutaneous nerve injuries, two conversions to total hip arthroplasty, three Brooker stage 1 heterotrophic ossification, one pulmonary embolism and one screw irritation. No incidence of wound breakdown, infection and radiological osteoarthritis was reported.
CONCLUSIONS: Imperfect reduction of the anterior column provided clinical outcomes that are as good as total anatomical reduction. This approach minimizes soft tissue damage and reduces perioperative morbidities.
PURPOSE: The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA).
METHODS: Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments.
RESULTS: Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA.
CONCLUSION: All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds.
PATIENTS AND METHODS: A total of 120 men, aged 40-70 years, with TD (serum total testosterone [TT] ≤ 12 nmol/L) were randomised to receive either i.m. TU (1000 mg) or placebo. In all, 58 and 56 men in the placebo and treatment arm, respectively, completed the study. Participants were seen six times in the 48-week period and the following data were collected: physical examination results, haemoglobin, haematocrit, TT, lipid profile, fasting blood glucose, sex hormone-binding globulin, liver function test, prostate- specific antigen (PSA) and adverse events.
RESULTS: The mean (sd) age of the participants was 53.4 (7.6) years. A significant increase in serum TT (P < 0.001), PSA (P = 0.010), haematocrit (P < 0.001), haemoglobin (P < 0.001) and total bilirubin (P = 0.001) were seen in the treatment arm over the 48-week period. Two men in the placebo arm and one man in the treatment arm developed myocardial infarction. Common adverse events observed in the treatment arm included itching/swelling/pain at the site of injection, flushing and acne. Overall, TU injections were well tolerated.
CONCLUSIONS: TU significantly increases serum testosterone in men with TD. PSA, haemoglobin and haematocrit were significantly elevated but were within clinically safe limits. There was no significant adverse reaction that led to the cessation of treatment.
METHODS: A total of 1402 ACLF patients, enrolled in the APASL-ACLF Research Consortium (AARC) with 90-day follow-up, were analyzed. An ACLF score was developed in a derivation cohort (n = 480) and was validated (n = 922).
RESULTS: The overall survival of ACLF patients at 28 days was 51.7%, with a median of 26.3 days. Five baseline variables, total bilirubin, creatinine, serum lactate, INR and hepatic encephalopathy, were found to be independent predictors of mortality, with AUROC in derivation and validation cohorts being 0.80 and 0.78, respectively. AARC-ACLF score (range 5-15) was found to be superior to MELD and CLIF SOFA scores in predicting mortality with an AUROC of 0.80. The point scores were categorized into grades of liver failure (Gr I: 5-7; II: 8-10; and III: 11-15 points) with 28-day cumulative mortalities of 12.7, 44.5 and 85.9%, respectively. The mortality risk could be dynamically calculated as, with each unit increase in AARC-ACLF score above 10, the risk increased by 20%. A score of ≥11 at baseline or persisting in the first week was often seen among nonsurvivors (p = 0.001).
CONCLUSIONS: The AARC-ACLF score is easy to use, dynamic and reliable, and superior to the existing prediction models. It can reliably predict the need for interventions, such as liver transplant, within the first week.
METHODS AND ANALYSIS: The measurement challenge has been established as an international resource to offer a common set of anonymised mammogram images for measurement and analysis. To date, full field digital mammogram images and core data from 1650 cases and 1929 controls from five countries have been collated. The measurement challenge is an ongoing collaboration and we are continuing to expand the resource to include additional image sets across different populations (from contributors) and to compare additional measurement methods (by challengers). The intended use of the measurement challenge resource is for refinement and validation of new and existing mammographic measurement methods. The measurement challenge resource provides a standardised dataset of mammographic images and core data that enables investigators to directly compare methods of measuring mammographic density or other mammographic features in case/control sets of both raw and processed images, for the purposes of the comparing their predictions of breast cancer risk.
ETHICS AND DISSEMINATION: Challengers and contributors are required to enter a Research Collaboration Agreement with the University of Melbourne prior to participation in the measurement challenge. The Challenge database of collated data and images are stored in a secure data repository at the University of Melbourne. Ethics approval for the measurement challenge is held at University of Melbourne (HREC ID 0931343.3).