Displaying all 5 publications

Abstract:
Sort:
  1. Sazili AQ, Norbaiyah B, Zulkifli I, Goh YM, Lotfi M, Small AH
    Asian-Australas J Anim Sci, 2013 May;26(5):723-31.
    PMID: 25049845 DOI: 10.5713/ajas.2012.12563
    This study provides a comparative analysis of the effects of pre-slaughter penetrative and non-penetrative stunning and post-slaughter stunning on meat quality attributes in longissimus lumborum (LL) and semitendinosus (ST) muscles in heifers. Ten animals were assigned to each of four treatment groups: i) animals were subjected to conventional Halal slaughter (a clean incision through the structures at the front of the upper neck - the trachea, oesophagus, carotid arteries and jugular veins) and post-cut penetrating mechanical stun within 10 to 20 s of the neck cut (Unstunned; US); ii) high power non-penetrating mechanical stunning followed by the neck cut (HPNP); iii) low power non-penetrating mechanical stunning followed by the neck cut (LPNP); and iv) penetrative stunning using a captive bolt pistol followed by the neck cut (P). For each carcass, muscle samples were removed within 45 min of slaughter, portioned and analysed for pH, cooking loss, water holding capacity (WHC), tenderness (WBS), lipid oxidation (TBARS) and color, over a two week storage period. Stunning did not affect pH and cooking loss. Significant differences in water holding capacity, tenderness, lipid oxidation and color were present at different storage time points. HPNP stunning resulted in lower WHC and color values, particularly lightness (L*), higher TBARS values and peak force values compared with those stunned using LPNP, P and US. These adverse effects on quality were mostly encountered in the ST muscle. In conclusion, the meat quality achieved using P, LPNP and US treatments was comparable, and no treatment stood out as considerably better than another.
  2. Shahcheraghi SH, Ayatollahi J, Aljabali AA, Shastri MD, Shukla SD, Chellappan DK, et al.
    Ther Deliv, 2021 03;12(3):235-244.
    PMID: 33624533 DOI: 10.4155/tde-2020-0129
    The COVID-19 pandemic continues to endanger world health and the economy. The causative SARS-CoV-2 coronavirus has a unique replication system. The end point of the COVID-19 pandemic is either herd immunity or widespread availability of an effective vaccine. Multiple candidate vaccines - peptide, virus-like particle, viral vectors (replicating and nonreplicating), nucleic acids (DNA or RNA), live attenuated virus, recombinant designed proteins and inactivated virus - are presently under various stages of expansion, and a small number of vaccine candidates have progressed into clinical phases. At the time of writing, three major pharmaceutical companies, namely Pfizer and Moderna, have their vaccines under mass production and administered to the public. This review aims to investigate the most critical vaccines developed for COVID-19 to date.
  3. Shahcheraghi SH, Aljabali AAA, Al Zoubi MS, Mishra V, Charbe NB, Haggag YA, et al.
    Life Sci, 2021 Aug 01;278:119632.
    PMID: 34019900 DOI: 10.1016/j.lfs.2021.119632
    Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
  4. Shrivastava G, Aljabali AA, Shahcheraghi SH, Lotfi M, Shastri MD, Shukla SD, et al.
    Future Oncol, 2021 Oct;17(29):3873-3880.
    PMID: 34263659 DOI: 10.2217/fon-2021-0247
    The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.
  5. Momtazmanesh S, Samieefar N, Uddin LQ, Ulrichs T, Kelishadi R, Roudenok V, et al.
    Adv Exp Med Biol, 2021;1318:911-921.
    PMID: 33973219 DOI: 10.1007/978-3-030-63761-3_51
    In the COVID-19 era, while we are encouraged to be physically far away from each other, social and scientific networking is needed more than ever. The dire consequences of social distancing can be diminished by social networking. Social media, a quintessential component of social networking, facilitates the dissemination of reliable information and fighting against misinformation by health authorities. Distance learning, telemedicine, and telehealth are among the most prominent applications of networking during this pandemic. Additionally, the COVID-19 pandemic highlights the importance of collaborative scientific efforts. In this chapter, we summarize the advantages of harnessing both social and scientific networking in minimizing the harms of this pandemic. We also discuss the extra collaborative measures we can take in our fight against COVID-19, particularly in the scientific field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links